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AbstractSpatial regression analysis is a technique employed to examine the relationship between independent and dependent variables indatasets that exhibit regional neighborhood influences or spatial effects. When a spatial effect exists for the independent variable, theSpatial Autoregressive (SAR) regression can be utilized. The Maximum Likelihood Estimation (MLE) is a commonly used parameterestimator for SAR. However, due to the limitations of MLE, the Bayesian method provides an alternative approach for parameterestimation. This study compares the results of SAR estimations using both MLE and Bayesian methods to determine the mostaccurate estimationmodel. Bothmethodswere implemented in this research tomodel the factors affecting theHumanDevelopmentIndex (HDI) in East Java Province for the year 2022. The findings indicate that the Bayesian SAR offers a superior proposed modelcompared to the MLE SAR. The factors influencing the HDI in East Java Province in 2022 include poverty, per capita expenditure, andthe presence of an upper middle-class manufacturing industry.
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1. INTRODUCTION

The Human Development Index (HDI) is a method used to
measure and evaluate efforts to improve the quality of life of
people in an area (Caniago and Wibowo, 2024) . One of the
provinces whose HDI score has increased from year to year is
East Java Province, which when compared to other provinces
on the island of Java shows a fairly high increase. In 2022, East
Java’s HDI reached 72.75, an increase of 0.61 points from
the previous year, which was at 72.14 points. However, when
compared to other provinces on the island of Java, East Java
Province is the province with the lowest HDI score (Badan
Pusat Statistik Provinsi Jawa Timur, 2023) . The high or low
score of the HDI is influenced by various factors that serve as
guidelines for improving human development (Ogujiuba et al.,
2024; Tyas and Sukartini, 2022) . For this reason, modeling
is needed to identify the factors that influence and must be
improved in efforts to increase the HDI in East Java.

Factors across regions often play a significant role in influ-
encing HDI within a specific area (Dai and Jin, 2021; Yanuar
et al., 2023a,b) , commonly referred to as spatial effects, in-
cluding spatial dependence and spatial diversity (Zhang et al.,
2021a,b) . Spatial dependence arises from the interconnection

between regions, whereas spatial diversity stems from the vari-
ations between different regions (Yasin et al., 2020, 2022; Yu
et al., 2022) . In the event of such occurrences, the appropriate
data modeling technique to employ is the Spatial Autoregres-
sive (SAR) regression method (Ver Hoef et al., 2018; Yanuar
et al., 2023b) . The estimation method commonly used in
SAR is the Maximum Likelihood Estimation (MLE) method
(Anselin, 2009) . Because of the MLE method’s limitations,
such as its inability to overcome heterogeneity issues, its poor
performance in estimating models for small data, the difficulty
in calculating standard error estimates for hypothesis testing
for large sample sizes, and the strict assumption of the need
for normality distribution, modeling is performed using the
Bayesian method. A Bayesian method provides various advan-
tages. It provides a handy approach for merging prior knowl-
edge with data within the right statistical context. Bayesian
inference is conditional on the data and exact without rely-
ing on asymptotic approximations, which eliminates concerns
about the error term’s normal distribution. For practitioners,
the results of Bayesian estimate are more comprehensible and
understandable.

The development of Bayesian techniques provides a wide
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range of tools suitable for estimating spatial models. Anselin
(1988) investigates the Bayesian approach applied to pure
spatial autoregressive and spatial error models, proposing dif-
fuse priors for model parameters and analytically deriving the
marginal posterior distributions for these parameters. Hepple
(1995) further builds on this by creating Bayesian analyses
for important spatial specifications, including the SARAR(1,0)
model, the SARAR(0,1) model (commonly referred to as the
SEM), and spatial moving average models, which are known as
SARMA(0,1). In each case, the joint posterior distributions of
the parameters are presented, from which the marginal poste-
rior distributions of the spatial autoregressive parameters are
analytically derived.

Recent research has utilized the Markov Chain Monte Carlo
(MCMC) method to estimate spatial models, particularly in
instances where analytically simplifying the marginal posterior
distributions or numerically integrating them poses challenges.
The MCMC method has been applied to various types of spatial
models in the studies conducted by Lesage (1997) and LeSage
and Pace (2009) . Kakamu and Wago (2008) compare the fi-
nite sample properties of Bayesian estimators derived from
the MCMC method with those obtained through Maximum
Likelihood Estimation (MLE) in the context of the static panel
spatial autoregressive model. In spatial models, the boundaries
of the parameter space for spatial autoregressive parameters are
clearly defined, facilitating the selection of suitable uninforma-
tive priors for these parameters. As a result, many studies assign
uniform priors across the parameter space for spatial autore-
gressive parameters, as evidenced in the research of (Kakamu
and Wago, 2008; Lesage, 1997; Parent and Lesage, 2008) .
Oliveira and Song (2008) investigate two forms of Jeffreys’
prior, referred to as independence Jeffreys and Jeffreys-rule pri-
ors, specifically for the spatial autoregressive parameter within
the framework of the SARAR(0,1) model. Jeffreys’ priors are
viewed as uninformative improper priors derived from the
information matrix, and one of their appealing attributes is
their resistance to changes in model reparameterization. Fur-
thermore, Parent and Lesage (2008) discuss the hierarchical
Bayesian approach for estimating a conditional autoregressive
(CAR) spatial model, operating under the assumption that the
spatially structured random component of the model follows
an autoregressive process.

This paper aims to contribute to the existing literature by
providing a comprehensive review of the Bayesian spatial au-
toregressive modeling framework, highlighting its theoretical
foundations, methodological advancements, and practical ap-
plications. The comparison between MLE and Bayesian frame-
work in estimating the spatial autoregressive case is also pre-
sented.

2. EXPERIMENTAL SECTION

2.1 Moran’s Index
In addition to concerns regarding sample size and normality,
spatial dependence presents a significant challenge in spatial
econometrics. The spatial weight matrix (W) serves as a rep-

resentation of spatial dependence. There are several methods
available for constructing this matrix, including distance, con-
tiguity, and geostatistical approaches (Ver Hoef et al., 2018) .
Defining the matrix incorrectly can result in misleading out-
comes. Currently, there is no universally accepted procedure
or criteria for identifying the optimal spatial structure, leaving
this as an area for further research. In practice, W is typi-
cally defined subjectively. To address this, an optimization
procedure utilizing the k-Nearest Neighbors (k-NN) method
is applied to create a spatial weight matrix that maximizes the
spatial autocorrelation coefficient (Jaya et al., 2018) . Spatial
autocorrelation is assessed using Moran’s index, which ranges
from -1 to 1; a Moran’s index value close to 1 denotes strong
spatial autocorrelation. The formula for Moran’s index can be
written as (Yanuar et al., 2023a) ;

I =
n
∑n
i=1

∑n
j=1wi j (yi − ȳ) (y j − ȳ)∑n

i=1
∑n
j=1wi j

∑n
j=1 (y j − ȳ)2

(1)

with i and j are the number of data (n), for i ≠ j. While yi is
the response variable for all observations i, ȳ is the mean of y,
wi j is an element of spatial weight matrixW. The presence of
spatial dependence on the dependent variable is also examined
in the hypothesis model using the Lagrange Multiplier Lag
(LM𝜌) test. The general structure of the Lagrange Multiplier
Lag is presented as follows (Anselin, 2009) ;

LM𝜌 =
(u′WY )2

[ u′un ]2D
, (2)

whereD =

[ (WX 𝛽 ) ′ (I−X (X ′X )−1X ′) (WX 𝛽 )
𝜎2

]
+tr(W′W+WW) ,X

is an independent matrix with size n × (m + 1), 𝛽 is a factor
of the regression coefficient of size m × 1. If LM𝜌 > X2

(𝛼 )1, it
indicates the presence of spatial dependence on the dependent
variable. Therefore, the modeling of data is carried out using a
Spatial Autoregressive model (SAR).

2.2 Spatial Autoregressive (SAR)
The Spatial autoregressive (SAR) model is a linear regression
model that incorporates spatial correlation among the depen-
dent variables (Dai et al., 2020; Jin et al., 2016) . The SAR
model can be presented as (Jaya et al., 2018; Lesage, 1999) :

yi = 𝜌

n∑︁
j=1

𝜔i jy j + 𝛽0 +
K∑︁
k=1

𝛽kxik + 𝜖 i (3)

In this context, yi denotes the response variable for the i-th
data point, 𝜌 represents the autoregressive spatial coefficient,
and 𝜔i j is an element of the spatial weight matrix derived from
the HDI scores across provinces. The parameter 𝛽0 indicates
the coefficient for the intercept, while 𝛽k represents the coef-
ficient of the regression slope for the k-th exogenous variable.
Moreover, xik indicates the value of the k-th exogenous variable
at the i-th HDI score, and 𝜖 i denotes a random error that is
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assumed to follow an identically independent normal distri-
bution with a mean of zero and a variance of 𝜎2, written as
𝜖 i ∼ N (0, 𝜎2).

2.3 Bayesian Spatial Autoregressive (Bayesian SAR)
The The Bayesian estimation method is particularly effective
in cases where the error term is not normally distributed and
does not meet the assumptions of homoscedasticity. In com-
parison to maximum likelihood estimation (MLE), Bayesian
estimation generally produces less favorable results when deal-
ing with small sample sizes. Additionally, Bayesian methods
are suitable for situations involving spatial heteroscedasticity,
where the variance of the error term in the spatial model is
unequal. Overall, the structure of the Bayesian SAR model
resembles that of the standard SAR model, with the main dif-
ference lying in the parameter estimation approach utilized in
the Bayesian method. The general form of the Bayesian SAR
model is presented in Equation (3) and can also be represented
in matrix notation as follows (Dai et al., 2020; Lesage, 1999) :

y = 𝜌Wy + X 𝛽 + u , with u ∼ N (0, 𝜎2I) , (4)

where y is a (n ×1) vector of the HDI score, 𝜌 is an autoregres-
sive parameter,W is a (n × n) spatial weight matrix, and X is a
(n × p) design matrix including the unit vector. The Bayesian
method assumes that the parameters 𝛽 and 𝜎2 are random
variables following the normal and inverse gamma distribu-
tion, respectively. While 𝜌 is a random variable following the
uniform distribution. The formulation for the joint posterior
distribution is as follows:

p( 𝛽 , 𝜎2 , 𝜌 |y , X) = L(y , X | 𝛽 , 𝜎2 , 𝜌)𝜋 ( 𝛽 |𝜎2)𝜋 (𝜎2)𝜋 ( 𝜌)
p(y , X) .

(5)

The posterior distribution in Equation (5) is obtained based
on the likelihood function and priors as follows:

1. The likelihood function L(y , X | 𝛽 , 𝜎2 , 𝜌):
It is assumed that the responses follow a normal distribu-
tion, thus the likelihood function can be written as:

L(y , X | 𝛽 , 𝜎2 , 𝜌) = (2𝜋𝜎2)− n
2 |A|

exp
(
− 1

2𝜎2
(Ay − X 𝛽 )′ (Ay − X 𝛽 )

)
,

with |A| = (I − 𝜌W ). (6)

2. The prior distribution for 𝛽 |𝜎2, or f ( 𝛽 |𝜎2), follows a
normal distribution:

f ( 𝛽 |𝜎2) = 1
(2𝜋)p/2 (𝜎2)p/2 |T |1/2

exp
(
− 1

2𝜎2
( 𝛽 − s)′T −1 ( 𝛽 − s)

)
,

𝛽 |𝜎2 ∼ N (s, 𝜎2T ). (7)

3. The prior distribution for 𝜎2, or f (𝜎2), follows an in-
verse gamma distribution:

f (𝜎2) = ba

Γ(a) (𝜎
2)−(a+1) exp

(
− b
𝜎2

)
,

𝜎2 ∼ IG (a, b). (8)

4. The prior distribution for 𝜌, or f ( 𝜌), follows a uniform
distribution:

f ( 𝜌) = 1

𝜆 −1
max − 𝜆 −1

min

,

𝜌 ∼ UNIF(𝜆 −1
min , 𝜆 −1

max). (9)

5. The joint prior distribution for 𝛽 and 𝜎2, or f ( 𝛽 , 𝜎2),
follows a normal-inverse gamma distribution:

f ( 𝛽 , 𝜎2) = f ( 𝛽 |𝜎2) × f (𝜎2) , (10)

and LeSage and Pace (2009) proved:

𝛽 , 𝜎2 ∼ N (s, 𝜎2T ) × IG (a, b) = NIG (s,T , a, b).

The likelihood function and all prior distributions obtained
above are used to construct the joint posterior distribution as
follows:

p( 𝛽 , 𝜌, 𝜎2 |y , X) = L(y , X | 𝛽 , 𝜎2 , 𝜌) f ( 𝛽 , 𝜎2) f ( 𝜌)
f (y , X) . (11)

By multiplying the expressions for the likelihood and the
prior, we can identify the form of the posterior distribution,
omitting a constant term p(D) that does not depend on the
model parameters. Therefore, the posterior distribution is
proportional to the product of the likelihood function and the
prior distribution.

p( 𝛽 , 𝜌, 𝜎2 |y , X) ∝ L(y , X | 𝛽 , 𝜎2 , 𝜌) f ( 𝛽 , 𝜎2) f ( 𝜌)
= L(y , X | 𝛽 , 𝜎2 , 𝜌) f ( 𝛽 |𝜎2) f (𝜎2) f ( 𝜌)

= (2𝜋𝜎2)− n
2 |A| exp

(
− 1

2𝜎2
(Ay − X 𝛽 )′ (Ay − X 𝛽 )

)
×

1
(2𝜋)p/2 (𝜎2)p/2 |T |1/2

exp
(
− 1

2𝜎2
( 𝛽 − s)′T −1 ( 𝛽 − s)

)
× ba

Γ(a) (𝜎
2)−(a+1) exp

(
− b
𝜎2

)
× 1

𝜆 −1
max − 𝜆 −1

min

.

= (𝜎2)−(a+
n+p
2 +1) |A| exp

(
− 1

2𝜎2

[
(Ay − X 𝛽 )′

(Ay − X 𝛽 ) + ( 𝛽 − s)′T −1 ( 𝛽 − s) + 2b
] )

. (12)

The joint posterior distribution above can be written as
follows:

p( 𝛽 , 𝜌, 𝜎2 |y , X) = (𝜎2)−(a∗+1) |A| exp
(
− 1

2𝜎2

[
2b∗

© 2025 The Authors. Page 74 of 79



Yanuar et. al. Science and Technology Indonesia, 10 (2025) 72-79

+( 𝛽 − s∗)′ (T ∗)−1 ( 𝛽 − s∗)
] )

,

with

T ∗ = (X ′X +T −1)−1 ,

s∗ = (X ′X +T −1)−1 (X ′Ay +T −1s) ,

b∗ = b + (s′T −1s + y′A′Ay) − (s∗)′ (T ∗)−1s∗

2
,

a∗ = a + n + p
2

.

The marginal posterior distribution for each estimated pa-
rameter, 𝛽 , 𝜌 and 𝜎2 are determined as follows:

1. Marginal posterior distribution for ( 𝛽 | 𝜌, 𝜎2):

p( 𝛽 | 𝜌, 𝜎2) ∼ N (s∗ , 𝜎2T ∗).

2. Marginal posterior distribution for (𝜎2 | 𝛽 , 𝜌) :

p(𝜎2 | 𝛽 , 𝜌) ∼ IG (a∗ , b∗).

3. Marginal posterior distribution for 𝜌 | 𝛽 , 𝜎2 :

f ( 𝜌 | 𝛽 , 𝜎2) = f ( 𝜌, 𝛽 , 𝜎2 |y , X)
f ( 𝛽 , 𝜎2 |y , X)

∝ f ( 𝜌, 𝛽 , 𝜎2 |y , X)

∝ |In − 𝜌W | exp
(
− 1

2𝜎2
(Ay − X 𝛽 )′ (Ay − X 𝛽 )

)
.

(13)

This conditional distribution of 𝜌 | 𝛽𝜎2 does not follow any
form of standard distribution. The exact values of parameter
estimates cannot be obtained from this distribution. There-
fore, the estimation is done by numerical procedure by using
the MCMC approach, which is a combination of the Gibbs
sampling and the metropolis methods (Ntzoufras, 2009) .

2.4 Convergence Diagnostic Test
The collection of MCMC samples extracted from the true pos-
terior distribution forms the basis for parameter inference in
Bayesian methods. To evaluate the reliability of this inference,
a convergence diagnostic is employed to ascertain the mini-
mum sample size necessary for accurately approximating the
target posterior density. Common graphical techniques used
for assessing convergence include trace plots, ergodic mean
plots, and autocorrelation plots. The stabilization of these plots
after a certain number of iterations indicates that the algorithm
has successfully converged.

3. RESULTS AND DISCUSSION

This study uses secondary data on the Human Development
Index (HDI) in regencies/cities in East Java in 2022. Data was
obtained from the website of the Central Statistics Agency of
East Java Province. The scope of the study was limited to 38

regencies/cities located in East Java province. The distribution
of HDI score for each city in East Java is shown in Figure
1. The independent variables used in this study are proper
sanitation (X1), Average Length of Schooling (X2), Poverty
(X3), Open Unemployment Rate (X4), Life Expectancy (X5),
and Per Capita Expenditure (X6). In addition, this study also
used a dummy variable (D). The dummy variable was selected
based on the existence of medium to large-scale industrial areas
in regencies/cities in East Java Province. If in a region there is
a medium to large-scale industry, a value of 1 is given to the
dummy variable (D = 1), or D = 0, else. Table 1 shows the
descriptive analysis of data.

Figure 1. The Distribution of the HDI Score for Each City in
East Java

Statistics of the HDI’s Score in East Java are presented in
Table 1. The mean of HDI’s score (Y ), proper sanitation (X1),
and life expectancy (X5) are more than 60%, while average
length of schooling (X2), poverty (X3), and open unemploy-
ment rate (X4) are less than 11%. There are Five cities that have
medium to large-scale manufacturing industry companies in
East Java, i.e., Gresik, Mojokerto City, Pasuruan, Sidoarjo, and
Surabaya City. Thus, the dummy variable is used to mention
the availability of this manufacturing. We coded 1 for each five
cities and 0 for the others. In this study, the spatial weight ma-
trix is constructed using the nearest neighbor method, known
as the k-Nearest Neighbor (k-NN) spatial weighting matrix.
This k-NN spatial weight matrix is created by calculating the
Euclidean distance between a designated area and all other
areas. The resulting distances are then organized in order of
proximity. This measurement process is repeated for other
areas as well. Subsequently, we simulate four different values of
k(k = 2, 3, 4, 5) for the nearest neighbors and determine the
optimal k based on the highest value of Moran’s index statistics.

Let choose two (k = 2) nearest neighbors to construct the
weight matrix C with the value of each element, ci j = 1, if i
and j are neighbors or ci j = 0, if not. Table 2 presents the
two selected nearest distances. Then the standardization of
the weight matrix is obtained by dividing each element to the
number of rows to produce a spatial weight matrix (W), with
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Table 1. Statistics of the HDI’s Score in East Java

Variable Q1 Mean Median Q3
HDI (Y ) 69.440 72.790 72.440 74.880

Proper sanitation (X1) 78.370 82.160 83.930 90.570
Average Length of Schooling (X2) 7.915 8.246 7.915 9.545

Poverty (X3) 6.840 10.170 9.6350 12.450
Open Unemployment Rate (X4) 4.343 5.229 5.315 6.338

Life Expectancy (X5) 70.780 72.110 72.860 73.180
Per Capita Expenditure (X6) 10278 11835 11571 12979

Table 2. The Two Nearest Neighbor (k = 2)

Area Neighbors Areas
Bangkalan Surabaya City and Sampang

Banyuwangi Bondowoso and Jember
Batu City Malang and Malang City

Blitar Kediri and Blitar City
Bojonegoro Nganjuk and Tuban
Bondowoso Jember and Situbondo

Gresik Lamongan and Surabaya City
Jember Bondowoso and Probolinggo

Jombang Mojokerto and Mojokerto City
Kediri Kediri City and Nganjuk

Blitar City Blitar and Kediri City
Kediri City Kediri and Nganjuk

Madiun City Magetan and Madiun
Malang City Batu City and Malang

Mojokerto City Jobang and Mojokerto
Pasuruan City Pasuruan and Sidoarjo

Probolinggo City Pasuruan City and Probolinggo
Lamongan Gresik and Mojokerto City
Lumajang Probolinggo City and Probolinggo
Madiun Madiun City and Magetan
Magetan Madiun City and Ngawi
Malang Batu City and Malang City

Mojokerto Batu City and Mojokerto City
Nganjuk Kediri and Kediri City
Ngawi Madiun City and Magetan
Pacitan Ponorogo and Trenggalek

Pamekasan Bangkalan and Sampang
Pasuruan Malang City and Pasuruan City
Ponorogo Magetan and Trenggalek

Probolinggo Probolinggo City and Lumajang
Sampang Bangkalan and Pamekasann
Sidoarjo Mojokerto and Surabaya City

Situbondo Banyuwangi and Bondowoso
Sumenep Pamekasan and Situbondo
Surabaya Bangkalan and Sidoarjo

Trenggalek Ponorogo and Tulungagung
Tuban Bojonegoro and Lamongan

Tulungagung Blitar City and Trenggalek

wi j =
ci j
k , or 0 for others. This spatial weight matrix is then

used to calculate the Moran’s Index statistics. Using Equation
(1), we got that the Moran’s index is 0.5103 (p-value is 0.0065).
The same steps are done for k = 3, 4, and 5 selected nearest
neighbors. The optimal value of k is the one that yields the
highest Moran’s index. The simulation results are illustrated
in Figure 2 below, which indicates that the maximum Moran’s
index value is achieved when k = 2. The analysis did not extend
to k = 6, 7, and beyond, as higher values of k typically lead to a
decrease in the Moran’s index. The peak Moran’s index value
facilitates the creation of the optimal spatial weight matrix (W).
Hence, in this study, we select k = 2, as it produces the highest
Moran’s I value according to the k-NN method for generating
the optimal spatial weight matrix (W).

Figure 2. Moran’s Index Value for k = 2, 3, 4, 5

Moran’s Index in this context is positive, indicating the pres-
ence of spatial dependence in the dependent variable. Prelimi-
nary studies revealed a spatial effect characterized by this spatial
dependence. Consequently, the SAR model was employed to
derive an appropriate model. Table 3 displays the results of
parameter estimation derived from the SAR model using both
Maximum Likelihood Estimation (MLE) and Bayesian esti-
mation methods.

Based on Table 3, it is found that not all independent vari-
ables have a significant influence on HDI in East Java. We in-
clude the significant independent variables in the model, which
are Poverty (X3), Per Capita Expenditure (X6), and Dummy
(D). The result of the estimation model is presented in Table
4.

This study revealed that all independent variables signifi-
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Table 3. Estimation Model Results with the SAR Model

Variable
MLE SAR Bayesian SAR

Estimation Means Standard Error Estimation Means Standard Error
Intercept 25.5175* 12.7570 25.3900* 15.1704

Proper sanitation (X1) 0.0123 0.0336 0.0123 0.2989
Average Length of Schooling (X2) 0.0144 0.4069 0.0154 0.4883

Poverty (X3) -0.2211* 0.0947 -0.2201* 0.1143
Open Unemployment Rate (X4) -0.0558 0.1900 -0.0541 0.2208

Life Expectancy (X5) 0.2668 0.1875 0.2704 0.2247
Per Capita Expenditure (X6) 0.0011* 0.0001 0.0011* 0.0002

Dummy (D) 5.8179* 0.7759 2.3870* 0.9339
Coefficient SAR (𝜌) 0.2099* 0.0857 0.2077* 0.0912

*Significant at 𝛼 = 0, 1, |Z𝛼/2| = 1, 645

Table 4. Estimation Model Results Part 2

Variable
MLE SAR Bayesian SAR

Estimation Means Standard Error Estimation Means Standard Error
Intercept 42.2773* 5.7660 42.4740* 5.7104
Poverty (X3) -0.2765* 0.0788 -0.2768* 0.0879
Per Capita Expenditure (X6) 0.0011* 0.0001 0.0011* 0.0001
Dummy (D) 2.2792* 0.7951 2.2860* 0.8843
Coefficient SAR (𝜌) 0.2567* 0.0748 0.2538* 0.0691
R2 0.9023 0.9037
MAE 1.1187 1.1165
RMSE 1.4543 1.4537
*Significant at 𝛼 = 0.1, |Z𝛼/2 | = 1.645

Figure 3. Convergence Test for Coefficient of Poverty Trace Plot. (b). Density plot. (c). Plot ACF
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cantly influence the HDI rate 𝛼 = 0.1, with consistent results
from both MLE and Bayesian approaches. To determine the
superior model, a comparison between the two methods is nec-
essary. The findings indicate that the Bayesian SAR model
outperforms the MLE model, as it yields a higher value of R2

along with lower values of MAE and RMSE. The next step
in the analysis involves conducting a convergence test for the
estimated parameters derived from the Bayesian SAR model.
The convergence test in the Bayesian method is performed by
analyzing the trace plot after running the Gibbs sampler for
50,000 iterations, including an initial burn-in period of 5,000
iterations. Figure 2 illustrates the trace plot and the density
plot for the selected parameter, "Poverty."

Based on the trace plot in Figure 3(a), it can be seen that the
distribution of selected parameter lies within two parallel hori-
zontal lines. This indicated that the parameters has converged.
Additionally, Figure 3(b) demonstrates how symmetrical the
density plot generated for each parameter estimate is suggest-
ing that the predicted values of the model’s parameters follow a
normal distribution curve. Regarding Figure 3(c). the autocor-
relation value gradually approaches zero as the lag increases as
shown by the ACF plot. It indicates that the estimated value is
generated in the direction of stability and eventually converges
to a value at which it is determined to be acceptable. Therefore,
the proposed model for the HDI rate based on the Bayesian
SAR model is accepted:

ŷ = 0.2538Wy + 42.4740 − 0.2768X3 + 0.0011X6

+ 2.2860D (14)

4. CONCLUSIONS

The model optimization performed using the k-NN method
identified that the appropriate spatial weight matrix (W) occurs
when k equals 2. This suggests a strong spatial autocorrelation
among the two nearest neighbors, indicating that the Human
Development Index (HDI) rates of adjacent areas are quite
similar. Due to the violation of the normality assumption in the
Maximum Likelihood Estimation (MLE) SAR approach, the
estimation and inference of the spatial autoregressive model
were conducted using the mean Bayesian SAR method. An
empirical analysis of the HDI scores for 38 regencies and cities
in East Java revealed that significant factors influencing HDI
include poverty, per capita expenditure, and the presence of
both large-scale and medium-scale industrial areas in these
regions. The parameter estimates obtained from both the
MLE and Bayesian approaches yielded similar results. This
study demonstrated that the Bayesian SAR method is superior
to the MLE SAR method in modeling HDI rates in East Java,
as it provides higher R2 estimates along with lower values for
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) in comparison to the MLE SAR method.
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