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AbstractThe partition dimension of a graph is determined by minimum number of vertex partitions such that every vertex has differentdistances to the ordered partitions. A complete graph is very easy to determine its partition dimension because each vertex has thesame distance to other vertices. However, what are the partition dimension if a complete graph is modified so that it becomes adaisy graph. In this paper, we discuss the partition dimension of daisy graphs. Next, we will also provide barbell graph operations ondaisy graphs.
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1. INTRODUCTION

The concept of partition dimension was firstly introduced by
Chartrand as an extension of the metric dimension concept.
Since its introduction, numerous studies have focused on de-
termining the partition dimension of various graphs.

LetG = (V , E) be a connected graph andΠ = {S1 , S2 , . . . ,
Sk} partition ofV (G). The representation of v with respect to
Π is the k-vector r (v |Π) = (d(v, S1) , d(v, S2) , . . . , d(v, Sk)),
where d(v, Si ) = minw∈Si d(v, w) for 1 ≤ i ≤ k. If r (v |Π) are
distinct for every v ∈ V (G), then Π is a resolving with k parti-
tion. Next, the smallest k is known as the partition dimension
ofG, denoted by pd(G) (Chartrand et al., 2000) .

Let Kn be a complete graph with vertices {vi |i ∈ [1.n]}.
The Daisy graph, denoted by D(Kn), n ≥ 3 is a graph con-
structed from Kn and n vertices {wi |i ∈ [1.n]} such that
vertices vi and v(i+1) are adjacent to wi for i ∈ [1.n] where
v(n+1) = v1 (Sugeng et al., 2022) . The barbell daisy graph, de-
noted by BD (Kn ) , is obtained by copying a daisy graph (that is,
D′ (Kn)) and connecting two graphs with a bridge (Asmiati et al.,
2018) . We assume a vertex set of D′ (Kn) is {v′i , w

′
i |1 ≤ i ≤ n}

and a bridge in BD (Kn ) connecting (v1v′1).
Many researchers have obtained partition dimensions for

several classes of graphs. Asmiati (2012) obtained partition
dimension of amalgamation of stars, Fernau et al. (2014) for
unicyclic graphs, and Amrullah et al. (2015) succeeded for
a subdivision of complete graph. Grigorious et al. (2014)
obtains the partition dimensions of a class of circular graphs
and is continued by Maritz and Vetrik (2018) . Rodríguez-

Velazquez et al. (2014) found partition dimension of trees and
then developed by Bagus and Baskoro (2015) . Next, Fredlina
and Baskoro (2015) for some families of trees.

The research topic of partition dimension of graphs is still
interesting today, not only in certain graph classes but also in
graph operations. Haryeni et al. (2017) determined partition
dimension of disconnected graphs and Amrullah et al. (2019)
for subdivision graph on the star. Next, Amrullah (2020) got a
subdivision of a homogeneous firecracker. Mohan et al. (2019)
examined the partition dimension of series-parallel graphs,
highlighting its computational complexity and structural prop-
erties, while Haryeni et al. (2019) found a method to construct
graphs with certain partition dimension and Hernando et al.
(2019) determined resolving dominating partitions in graphs.

Other interesting results for dimension partition of graphs
that have been obtained are Baskoro and Haryeni (2020) deter-
mined all graphs of order n ≥ 11 and diameter 2 with partition
dimension (n − 3). Khali et al. (2021) focused on bounded
partition dimensions in convex polytopes with pendant edges,
providing bounds and constructions for these families. Simi-
larly, Azeem et al. (2022) investigated for hexagonal Möbius
ladders, deriving sharp bounds that demonstrate the parame-
ter’s sensitivity to symmetrical structures. Kuziak et al. (2023)
determined new definition about the edge partition dimension
of graphs, whereas Ridwan et al. (2023) determined the domi-
nating partition dimension and locating chromatic number of
graphs.

The latest research on partition dimension was conducted
by Hafidh and Baskoro (2024) used palm approach to deter-
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mine partition dimension of trees. Koam et al. (2024) ana-
lyzed cardinality bounds for partition resolving sets in convex
polytope-like graphs. Similarly, Bhatti et al. (2024) studied the
partition dimension in generalized hexagonal cellular networks,
emphasizing its utility in wireless communication systems.

Based on literature studies, there is no discussion about the
partition dimensions of daisy graphs. Likewise for the partition
dimensions of the results of barbell graph operations. This
research focuses on determining the partition dimension of
both the daisy graph and the barbell daisy graph.

The following theorem will be used for the next discussion
which is taken from Chartrand et al. (2000)

Theorem 1.1 The partition dimension of cycle graph Cn for n ≥ 3
is 3.

2. METHODS

In this section, steps are given to determine partition dimension
of daisy graphs and its barbell.

1. Construct daisy graphs D(Kn) for n ≥ 3.
2. Determine the lower bound of partition dimension for

daisy graph D(Kn) for n ≥ 3. Since daisy graph contain
cycles, then by Theorem 1.1. we have, pd(D(Kn)) ≥ 3.

3. Determine the upper bound of partition dimension for
daisy graphD(Kn) for n ≥ 3. Every vertices ofV (D(Kn))
for n ≥ 3 are grouped into different partition classes so
that they become a minimum resolving partition set.

4. The partition dimension of the daisy graph is determined
from the lower and upper bound values obtained.

5. These steps are also carried out to determine the partition
dimension of the barbell daisy graph BD (Kn ) for n ≥ 3.
However, since the barbell daisy graph contains a daisy
graph, then pd(BD (Kn ) ) ≥ pd(D(Kn)).

3. RESULTS AND DISCUSSION

In this section, we determine the partition dimension of Daisy
graph and barbell Daisy graph.

Lemma 3.1 Suppose Π = {S1 , S2 , . . . , Sk} resolving partition of
Daisy graph D(Kn), where n ≥ 3 and each Sk contains at least one
vertex vi ∈ V (Kn). If vi , v j ∈ D(Kn), with i ≠ j belong to the same
partition, then r (vi |Π) = r (v j |Π).

Proof. Since Sk contains at least one vertex vi ∈ V (Kn), then
d(vi , Sk) = 1. If vi , v j ∈ D(Kn), where i ≠ j and they belong to
the same partition, in their representation, the value 0 lies on
the same ordinate. Thus, r (vi |Π) = r (v j |Π).

Lemma 3.2 Let the daisy path l(wi ,w j ) : wi , . . . , w j , where i ≠ j,
passing through three consecutive vertices inKn . LetΠ = {S1 , S2 , ...,
Sk} be a resolving partition of Daisy graph D(Kn), where n ≥ 3
and there exists a path l(wi ,w j ) . If vi belongs to the t partition
S1 , S2 , . . . , St , where t = ⌈ n3 ⌉, t < k, then three consecutive vertices
on l(wi ,w j ) are in the same partition, and wi and w j are in different
singleton partitions.

Proof. Let V (l(wi ,w j ) ) = {wi , vi , vi+1 , vi+2 , w j}. Furthermore,
since Π is a resolving partition, then r (vi , wi |Π) are distinct.
It will be proven that if three consecutive vertices on the path
l(wi ,w j ) , namely vi , vi+1 , vi+2, are not in the same partition or
wi , w j are not in different singleton partitions, then vi is in more
than t partition with t = ⌈n/3⌉.

Three consecutive vertices on the path l(wi ,w j ) lie in different
partition. These three vertices can be divided into either two
or three partitions. Therefore, there are at least

⌈ n
3

⌉
− 1 + 2 =⌈ n

3

⌉
+ 1 ≥ t =

⌈ n
3

⌉
. Next, wi and w j on the path l(wi ,w j ) do

not belong to different singleton partition. Since it is a path,
vertex wi is adjacent to vi and vertex vi+2 is adjacent to w j .
d(vi , wi ) = d(vi+2 , w j) = 1, d(vi , w j) = d(vi+2 , wi ) = 2, and
every vertex vk , k = 1, 2, . . . , n, is adjacent to each other. To
ensure different representations of vertices, at least vi and vi+2
in this condition must belong to different partitions. Thus,
there are at least

⌈ n
3

⌉
+ 1 ≥ t =

⌈ n
3

⌉
partition.

Theorem 3.1 The partition dimension of Daisy graph pd(D(Kn))
is :

pd(D(Kn)) =
{
3 for n = 3
n −

⌊ n
3

⌋
for n > 3

Proof. The proof is divided into four cases

Case 1. For n = 3.
The graph D(K3) contains cycle graphs, based on Theorem
1.1, the lower bound for the partition dimension of the Daisy
graph D(K3) :

pd(D(K3)) ≥ 3 (1)

Given Π = {S1 , S2 , S3}, be the partition of theV (D(K3))
with S1 = {v1 , v2 , w1}, S2 = {v3 , w2}, S3 = {w3}. The repre-
sentative forV (D(K3)) with respect to Π are :

r (v1 |Π) = (0, 1, 1)
r (v2 |Π) = (0, 1, 2)
r (v3 |Π) = (1, 0, 1)
r (w1 |Π) = (0, 2, 2)
r (w2 |Π) = (1, 0, 2)
r (w3 |Π) = (1, 1, 0)

Since every representative are distinct, Π is resolving partition
of D(K3). Then the lower bound for the partition dimension
of the Daisy graph D(K3):

pd(D(K3)) ≤ 3 (2)

Based on (1) and (2), we have pd(D(K3)) = 3.
Case 2. For n > 3, with n ≡ 1(mod3).
To establish the lower bound of the Daisy graph D(Kn) with
n > 3 and n ≡ 1 mod 3, it will be shown that (n − ⌊ n3 ⌋ − 1)
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partitions are insufficient. Assume there are (n − ⌊ n3 ⌋ − 1)
partitions in D(Kn). According to Lemma 3.2, a total of 3k
vertices, with k = (⌊ n3 ⌋ − 1) being a constant, from n vertices vi
are contained in k partition. Thus, three consecutive vertices vi
on the path l(wi ,w j ) are in the same partition class, and there are
at least (k + 1) distinct vertices w j on the path l(wi ,w j ) with w j as
the sole member of a different partition. Then, the remaining
four vertices vi are partitioned into two partition classes. Hence,
there are at least k + (k + 1) + 2 = (n − ⌊ n3 ⌋) partition classes,
contradicting the assumption. Therefore,

pd(D(Kn)) ≥ (n − ⌊ n
3
⌋) (3)

GivenΠ = {S1 , S2 , . . . S(n−⌊ n3 ⌋ ) }, be the partition of theV (D(Kn
)) with :

S(n−⌊ n3 ⌋−1) = {vi |i = n , (n − 1)}
S(n−⌊ n3 ⌋−2) = {vi |i = (n − 2) , (n − 3)}

S1 = {vi |i = 1, 2, 3} if n ≥ 7
S2 = {vi |i = 4, 5, 6} if n ≥ 10
S3 = {vi |i = 7, 8, 9} if n ≥ 13
S 2
3 i

= {wi |i ≡ 0 (mod 3)}

S⌈ 23 i ⌉ = {wi |i ≡ 1 (mod 3)}

S⌊ 23 i ⌋ = {wi |i ≡ 2 (mod 3)}

Thus,wi when i = n is an element of partition-⌈23 i⌉ = (n−⌊ n3 ⌋).
Consequently, the vertices of Daisy graph D(Kn) have distinct
representations, hence Π is a resolving partition. The upper
bound of pd(D(Kn)) is

pd(D(Kn)) ≤ (n − ⌊ n
3
⌋) (4)

Based on (3) and (4), we have pd(D(Kn)) = (n − ⌊ n3 ⌋)
Case 3. For n > 3, with n ≡ 2(mod3).
To establish the lower bound of the Daisy graph D(Kn) with
n > 3 and n ≡ 2 mod 3, it will be shown that (n − ⌊ n3 ⌋ − 1)
partitions are insufficient. Assume there are (n − ⌊ n3 ⌋ − 1)
partitions in D(Kn). According to Lemma 3.2, n vertices of vi
are contained in ⌈ n3 ⌉ partition. Thus, three consecutive vertices
vi on the path l(wi ,w j ) are in the same partition, and there are at
least ⌈ n3 ⌉ distinct vertices w j on the path l(wi ,w j ) with w j as the
sole member of a different partition. Hence, there are at least
⌈ n3 ⌉ + ⌈ n3 ⌉ = (n − ⌊ n3 ⌋) partition, contradicting the assumption.
Therefore,

pd(D(Kn)) ≥ (n − ⌊ n
3
⌋) (5)

Given Π = {S1 , S2 , . . . S(n−⌊ n3 ⌋ ) }, be the partition of the

V (D(Kn)) with :

S(n−⌊ n3 ⌋−1) = {vi |i = n , (n − 1)}
S1 = {vi |i = 1, 2, 3} if n ≥ 5
S3 = {vi |i = 4, 5, 6} if n ≥ 8
S5 = {vi |i = 7, 8, 9} if n ≥ 11

Sn−⌊ n3 ⌋ = {wi |i = n}
S 2
3 i

= {wi |i ≡ 0 (mod 3)}

S⌈ 23 i ⌉ = {wi |i ≡ 1 (mod 3)}

S⌊ 23 i ⌋ = {wi |i ≡ 2 (mod 3)}

Thus, wi when i = n is an element of partition-(n − ⌊ n3 ⌋).
Consequently, the vertices of Daisy graph D(Kn) have distinct
representations, hence Π is a resolving partition. The upper
bound of pd(D(Kn)) is

pd(D(Kn)) ≤ (n − ⌊ n
3
⌋) (6)

Based on (5) and (6), we have pd(D(Kn)) = (n − ⌊ n3 ⌋).
Case 4. For n > 3, with n ≡ 0(mod3).
To establish the lower bound of the Daisy graph D(Kn) with
n > 3 and n ≡ 0 mod 3, it will be shown that (n − ⌊ n3 ⌋ − 1)
partitions are insufficient. Assume there are (n − ⌊ n3 ⌋ − 1)
partitions in D(Kn). According to Lemma 3.2, n vertices of vi
are contained in ⌈ n3 ⌉ partition. Thus, three consecutive vertices
vi on the path l(wi ,w j ) are in the same partition, and there are at
least ⌈ n3 ⌉ distinct vertices w j on the path l(wi ,w j ) with w j as the
sole member of a different partition. Hence, there are at least
⌈ n3 ⌉ + ⌈ n3 ⌉ = (n − ⌊ n3 ⌋) partition, contradicting the assumption.
Therefore,

pd(D(Kn)) ≥ (n − ⌊ n
3
⌋) (7)

Given Π = {S1 , S2 , . . . S(n−⌊ n3 ⌋ ) }, be the partition of the
V (D(Kn)) with :

S2⌊ i3 ⌋−1 = {vi |i = 1, 2, 3, . . . , n}

S 2
3 i

= {wi |i ≡ 0 (mod 3)}

S⌈ 23 i ⌉ = {wi |i ≡ 1 (mod 3)}

S⌊ 23 i ⌋ = {wi |i ≡ 2 (mod 3)}

Thus,wi when i = n is an element of partition-( 23 i) = (n−⌊ n3 ⌋).
Consequently, the vertices of Daisy graph D(Kn) have distinct
representations, hence Π is a resolving partition. The upper
bound of pd(D(Kn)) is

pd(D(Kn)) ≤ (n − ⌊ n
3
⌋) (8)

Based on (7) and (8), we have pd(D(Kn)) = (n − ⌊ n3 ⌋). The
complete proof.
Figures 1 and 2 show that the minimum resolving partition for
D(K3) and D(K6) is 3 and 4, respectively.
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Figure 1. Graph D(K3) with Minimum Resolving Partition.

Figure 2. Graph D(K6) with Minimum Resolving Partition.

Theorem 3.2 The partition dimension of barbell Daisy graph pd(B
(D (Kn ) ) ) is :

pd(B(D (Kn ) ) ) =
{
4 for n = 3, 4
n −

⌊ n
3

⌋
for n > 4

Proof. The proof is divided into five cases

Case 1. For n = 3.
Since the barbell Daisy graph BD (K3), contains Daisy graph
D(K3), according to Theorem 3.1, pd(BD (K3)) ≥ 3. Sup-
pose there are 3 partitions with r (v1) = r (v′1), then r (v1 |Π) =
r (v′1 |Π) = (0, 1, 1), a contradiction. Thus, at least 3 + 1 parti-
tions are needed to satisfy the partition dimension requirement
of the barbell Daisy graph BD (K3). Consequently,

pd(BD (K3)) ≥ 4 (9)

Given Π = {S1 , S2 , S3 , S4}, be the partition of theV (BD (K3))

with :

S1 = {v1 , w1 , v2 , v′1}
S2 = {w2 , v3 , w′

1 , v
′
2 , w

′
2}

S3 = {w3 , v′3}
S4 = {w′

3}

Thus, each vertex in the barbell Daisy graph BD (K3), has a
distinct representation, implying that Π is a resolving partition.
Consequently,

pd(BD (K3)) ≤ 4 (10)

Based on (9) and (10), we have pd(BD (K3)) = 4.

Case 2. For n = 4.
Since the barbell Daisy graph BD (K4), contains Daisy graph
D(K4), according to Theorem 3.1, pd(BD (K4)) ≥ 3. Sup-
pose there are 3 partitions with r (v1) = r (v′1), then r (v1 |Π) =
r (v′1 |Π) = (0, 1, 1), a contradiction. Thus, at least 3 + 1 parti-
tions are needed to satisfy the partition dimension requirement
of the barbell Daisy graph BD (K4). Consequently,

pd(BD (K4)) ≥ 4 (11)

Given Π = {S1 , S2 , S3 , S4}, be the partition of theV (BD (K4))
with :

S1 = {v1 , w1 , v2 , w2 , v′1 , w
′
1}

S2 = {v3 , w3 , v4 , v′2 , w
′
2}

S3 = {w4 , v′3 , w
′
3}

S4 = {v′4 , w
′
4}

Thus, each vertex in the barbell Daisy graph BD (K4), has a
distinct representation, implying that Π is a resolving partition.
Consequently,

pd(BD (K4)) ≤ 4 (12)

Based on (11) and (12), we have pd(BD (K4)) = 4.

Case 3. For n > 4, with n ≡ 1(mod3).
Since the barbell Daisy graphBD (Kn), contains the Daisy graph
D(Kn), according to Theorem 3.1,

pd(BD (Kn ) ) ≥ (n − ⌊ n
3
⌋) (13)

Given Π = {S1 , S2 , . . . , S(n−⌊ n3 ⌋ ) }, be the partition of the
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V (BD (Kn ) ) with :

S(n−⌊ n3 ⌋−1) = {vi | i = n , (n − 1)}
S(n−⌊ n3 ⌋−2) = {vi | i = (n − 2) , (n − 3)}

S1 = {vi | i = 1, 2, 3 if n ≥ 7}
S2 = {vi | i = 4, 5, 6 if n ≥ 10}
S3 = {vi | i = 7, 8, 9 if n ≥ 13}

S 2
3 i

= {wi | i ≡ 0 (mod 3)}

S⌈ 23 i ⌉ = {wi | i ≡ 1 (mod 3)}

S⌊ 23 i ⌋ = {wi | i ≡ 2 (mod 3)}

S2 = {v′i | i = n , (n − 1)}
S3 = {v′i | i = (n − 2) , (n − 3)}

S(n−⌊ n3 ⌋ ) = {v′i | i = 1, 2, 3 if n ≥ 7}
S(n−⌊ n3 ⌋−2) = {v′i | i = 4, 5, 6 if n ≥ 10}
S( (n−⌊ n3 ⌋−4) ) = {v′i | i = 7, 8, 9 if n ≥ 13}

S⌈ 23 (n−i ) ⌉+1 = {w′
i | i ≡ 0 (mod 3) , i ≡ 2 (mod 3)}

S( 23 (n−i ) )+1 = {w′
i | i ≡ 1 (mod 3)}

Thus, each vertex of barbell Daisy graph BD (Kn ) , has a dis-
tinct representation, implying that Π is a resolving partition.
Therefore, the upper bound is

pd(BD (Kn ) ) ≤ (n − ⌊ n
3
⌋) (14)

Based on (13) and (14), we have pd(BD (Kn ) ) = (n − ⌊ n3 ⌋).

Case 4. For n > 4, with n ≡ 2(mod3).
Since the barbell Daisy graphBD (Kn), contains the Daisy graph
D(Kn), according to Theorem 3.1,

pd(BD (Kn ) ) ≥ (n − ⌊ n
3
⌋) (15)

Given Π = {S1 , S2 , . . . , S(n−⌊ n3 ⌋ ) }, be the partition of the

V (BD (Kn ) ) with :

S(n−⌊n/3⌋−1) = {vi | i = n , (n − 1)}
S1 = {vi | i = 1, 2, 3 if n ≥ 5}
S3 = {vi | i = 4, 5, 6 if n ≥ 8}
S5 = {vi | i = 7, 8, 9 if n ≥ 11}

S(n−⌊n/3⌋ ) = {wi | i = n}
S( 23 i) = {wi | i ≡ 0 (mod 3)}

S( ⌈ 23 i ⌉) = {wi | i ≡ 1 (mod 3)}

S( ⌊ 23 i ⌋) = {wi | i ≡ 2 (mod 3)}

S2 = {v′i | i = n , (n − 1)}
S(n−⌊n/3⌋ ) = {v′i | i = 1, 2, 3 if n ≥ 5}

S(n−⌊n/3⌋−2) = {v′i | i = 4, 5, 6 if n ≥ 8}
S(n−⌊n/3⌋−4) = {v′i | i = 7, 8, 9 if n ≥ 11}

S1 = {w′
i | i = n}

S( ⌊ 23 (n−i ) ⌋+2) = {w′
i | i ≡ 0 (mod 3) , i ≡ 1 (mod 3)}

S( 23 (n−i )+2) = {w′
i | i ≡ 2 (mod 3)}

Thus, each vertex of barbell Daisy graph BD (Kn ) , has a dis-
tinct representation, implying that Π is a resolving partition.
Therefore, an upper bound on pd(BD (Kn ) ) is

pd(BD (Kn ) ) ≤ (n − ⌊ n
3
⌋) (16)

Based on (15) and (16), we have pd(BD (Kn ) ) = (n − ⌊ n3 ⌋).
Case 5. For n > 4, with n ≡ 0(mod3).
Since the barbell Daisy graphBD (Kn), contains the Daisy graph
D(Kn), according to Theorem 3.1,

pd(BD (Kn ) ) ≥ (n − ⌊ n
3
⌋) (17)

Given Π = {S1 , S2 , . . . , S(n−⌊ n3 ⌋ ) }, be the partition of the
V (BD (Kn ) ) with :

S(2⌈i/3⌉−1) = {vi | i = 1, 2, 3, . . . , n}
S( 23 i) = {wi | i ≡ 0 (mod 3)}

S( ⌈ 23 i ⌉) = {wi | i ≡ 1 (mod 3)}

S( ⌊ 23 i ⌋) = {wi | i ≡ 2 (mod 3)}

S(2⌈ (n−i+1)/3⌉ ) = {v′i | i = 1, 2, 3, . . . , n}
S( ⌈ 23 (n−i ) ⌉+1) = {w′

i | i ≡ 2 (mod 3)}

S( ⌊ 23 (n−i ) ⌋+1) = {w′
i | i ≡ 1 (mod 3)}

S( 23 (n−i )+2) = {w′
i | i ≡ 0 (mod 3)}
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Thus, each vertex of barbell Daisy graph BD (Kn ) , has a dis-
tinct representation, implying that Π is a resolving partition.
Therefore, an upper bound on pd(BD(Kn ) ) is

pd(BD (Kn ) ) ≤ (n − ⌊ n
3
⌋) (18)

Based on (17) and (18), we have pd(BD (Kn ) ) = (n − ⌊ n3 ⌋). The
complete proof.
Figure 3 shows that the minimum resolving partition forBD (K4)
is 4, whereas Figure 4 for BD (K8 ) is 6.

Figure 3. Graph BD (K4) with Minimum Resolving Partition

Figure 4. Graph BD (K8 ) with Minimum Resolving Partition

4. CONCLUSION

Based on the above reasoning, the conclusion for this research
is partition dimension of Daisy graph pd(D(Kn)) is 3 for n = 3,
and (n − ⌊ n3 ⌋) for n > 3. Partition dimension of Barbell Daisy
graph pd(BD(Kn ) ) is 4 for n = 3, 4 and (n − ⌊ n3 ⌋ ) for n > 4.
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