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AbstractAISI 1045 is a steel used to make engine components for motor vehicles and aircraft. The quality of AISI 1045 is influenced by itssurface roughness, both axial and tangential. The prediction of AISI 1045 surface roughness aims to produce quality products ina shorter time and at a lower cost. The axial surface roughness is in the form of certain grades according to ISO. This method is aprediction technique that combines several single prediction models to obtain better prediction results. In this work, the ensemblemethod is built using a voting system from an odd number of single prediction models of the decision trees. The proposed SingleModel consists of one decision tree model with crisp discretization (DT1) and three models with fuzzy discretization (DT2, DT3,and DT4). The research data were obtained through experiments measuring the axial surface roughness of AISI 1045 steel using awet machining system by considering cutting speed, feed motion, axial depth of cut, and tangential surface roughness. The study’sresults indicate that not all proposed ensemble models are built to have better performance than single prediction models. Ofthe four proposed single prediction models, only one model has an accuracy above 80%, namely the decision tree model withfuzzy discretization using a combination of linear-trapezoidal fuzzy membership functions (DT4 model). The model performancebased on accuracy, recall, precision, F1-score, and AUC is 80.73%, 48.53%, 73.47%, 58.44%, and 67.72%, respectively. For the fourensemble models formed from the combination of three Single decision tree models, only the combination of DT1, DT2, and DT3does not perform better than the Single model. The other three ensemble methods have better accuracy, recall, and AUC than theperformance of all proposed Single models with values of 81.33 - 82.67%, 51.62 - 55.19%, and 69.04 - 71.02%, respectively.
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1. INTRODUCTION

The ensemble method is an approach in statistical machine
learning that seeks the best prediction solution by combining
several single prediction methods in one algorithm (Wang et al.,
2022; Livieris et al., 2019) and then using an average or voting
system depending on the purpose of the assignment (Karlos
et al., 2020; Dutt et al., 2016). The ensemble method is one
solution when a single method does not or has not been able to
provide satisfactory performance (Zhao and Ye, 2024; Lu et al.,
2023; Ganaie et al., 2022; Tinh and Mai, 2021). To obtain
good ensemble method performance, it is sometimes necessary
to improve the performance of a single method (Resti et al.,
2024) .

Discretization is a statistical technique that attempts to
gather information by converting data from a ratio or inter-
val scale to an ordinal or nominal scale (Resti et al., 2023;

Chen and Huang, 2021; Roy and Pal, 2003). This method
can also be employed to enhance the efficacy of prediction
methods such as decision tree (Kresnawati et al., 2024; Altay
and Cinay, 2016) or naive Bayes (Resti et al., 2023; Femina
and Sudheep, 2020), especially fuzzy discretization which uses
the Mathematical concept of set membership in the interval
[0.1] to represent ambiguous class interval groups in the dataset
(Resti et al., 2023) . Decision trees do not require specific sta-
tistical assumptions, whereas naive Bayes has several statistical
assumptions, so decision trees are more flexible in their ap-
plication. The model performance has been significantly en-
hanced by the use of fuzzy discretization in prediction methods,
which has been observed in a variety of disciplines of study,
including health (Algehyne et al., 2022; Femina and Sudheep,
2020; Yazgi and Necla, 2015), agriculture (Resti et al., 2023;
Chen and Huang, 2021), occupational safety (Fernández et al.,
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2022) , and others. However, all of them are implemented in
single prediction methods and generally use the same fuzzy
membership function for all categories in each variable such as
triangular function (Femina and Sudheep, 2020), trapezoidal
(Algehyne et al., 2022; Yazgi and Necla, 2015), or Gaussian
(Muludi et al., 2024) . Several combinations of different fuzzy
membership functions can also improve the performance of
prediction models (Resti et al., 2023) . The type and number of
fuzzy membership functions used play a major role in obtaining
model performance (Chen and Huang, 2021; Shanmugapariya
et al., 2017).

High, robust, and stable prediction model performance is
required in many industrial processes, including the AISI 1045
milling process in the manufacturing industry. In the current
4.0 era, the manufacturing industry is required to compete
in improving product quality, manufacturing process speed,
reducing production costs, safe production, and being environ-
mentally friendly. AISI 1045 is a type of steel used to make
engine components, in motor vehicles and aircraft. The quality
of the AISI 1045 milling results is indicated by the quality of
its surface roughness (Alajmi and Almeshal, 2021) , while the
milling process depends on the machining system involving
coolant (Baldin et al., 2023) and machining parameters such
as cutting speed, feed motion, and axial depth of cut (Qasim
et al., 2015) , cutting fluid (Alajmi and Almeshal, 2021) , and
tool wear (Woo and Lee, 2015) .

The quality of AISI 1045 axial surface roughness will af-
fect the machine element components’ performance (Baldin
et al., 2023; Alajmi and Almeshal, 2021). Low quality can
reduce product efficiency and component service life, increase
production costs, and shorten the remaining service life of
the equipment. For this reason, a mathematical model that
optimizes surface roughness needs to be built based on the
machining system and machining factors or significant inter-
actions between factors (Kandananond, 2021; Qasim et al.,
2015). On the other hand, although experiments play a major
role in obtaining optimal surface roughness, experiments are
limited due to high costs and inefficiency (Dubey et al., 2022) .
For this reason, it is also necessary to predict AISI 1045 surface
roughness with accurate results indicated by high, robust, and
stable performance so that the demands of the manufacturing
industry in the 4.0 era can be realized (Pimenov et al., 2017) .
We proposed an ensemble model of multiple decision trees
with crisp and fuzzy discretization for axial surface roughness
prediction in certain grades according to the International Stan-
dard Organization (ISO). One decision tree model with crisp
discretization and three models with fuzzy discretization. Each
of the last three models is created using a different combination
of fuzzy membership functions. Factors considered in pre-
dicting axial surface roughness are cutting speed, feed motion,
axial depth of cut, and tangential surface roughness where the
machining system uses wet machining.

2. EXPERIMENTAL SECTION

In general, this research consists of two stages. The first stage
is an experiment that measures the axial surface roughness of
AISI 1045 milling results. The second stage is to predict the
axial surface roughness of AISI 1045 using a statistical ma-
chine learning approach, in the form of an ensemble method.
In the first stage, the experiment on the milling process was
carried out using a wet machining system with Bromus liquid.
Measurement of the axial surface roughness of AISI 1045 was
carried out by setting the cutting speed, feed motion, and axial
depth of cut on the OPTImill F 105 CNC milling machine.
Tangential surface roughness can also be measured based on
the experiment. The AISI 1045 used in this study has dimen-
sions of 200×100×25 mm with a material hardness of 40-45
HRC. This high hardness and durability require a tool capable
of cutting and has a low risk of wear. For this purpose, a coated
end mill carbide tool is used, which has a hardness of 90-93
HRC, as given in Figure 1.

Figure 1. Coated End Mill Carbide

The cutting method used is the face milling process with
a down-milling cutting direction. The surface roughness of
the machined product was measured using the Handysurf Ac-
cretech E-35B instrument and a measurement pattern with an
accuracy of 0.01 𝜇m, a measurement length of 4 mm, and a
cutoff of 0.8.

In the second stage, predictive modeling using the ensemble
method is built from single models in the form of decision trees
with crisp and fuzzy discretization. To transform data using the
concept of crisp set theory, we postulated that the number of
predictor variable classes indicates of prior knowledge or expert
experience. Assume that Xd is the d-th independent variable
of continuous type and has a value within an interval [min(xd),
max(xd)]. The crisp discretization of xd into m categories is
achieved by identifying m pairs of lower and upper classes limit
with an interval width of r(xd) that do not intersect.The upper-
class limit uc1 (xd) , u

c
2 (xd) , u

c
3 (xd) , . . . , u

c
m−1 (xd) , u

c
m (xd) is the

intersection points of the variable value, which is derived by
(Resti et al., 2023) :
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Table 1. Research Variable

Independent Variable Min Q1 Mean Q3 Max

Cutting speed m/min (Vc) 7.5 10 13.8 17.5 20
Feed motion mm/gear ( fz) 0.05 0.08 0.1 0.13 0.15
Axial depth of cut (ax) 0.75 0.94 1.13 1.31 1.5
Tangential surface roughness at point 1 (Rt1) 0.4 4.39 6.2 7.73 16.7
Tangential surface roughness at point 2 (Rt2) 0.5 4.3 6.18 7.75 23.8
Tangential surface roughness at point 3 (Rt3) 0.4 4.09 5.86 7.57 16.4
Tangential surface roughness at point 4 (Rt4) 0.33 3.64 5.59 6.97 14.72
Tangential surface roughness at point 5 (Rt5) 0.4 4.07 5.84 7.25 18.7
Tangential surface roughness at point 6 (Rt6) 0.35 4.26 6.41 7.68 32.3

Dependent Variable

Axial surface roughness 𝜇m (Ra) Number of Samples for Each Grade

N3 N4 N5 N6 N7
2 17 44 52 5

Figure 2. Ensemble Method of Multiple Decision Tree

uc1 (xd) = min(xd) + r (xd)
uc2 (xd) = min(xd) + 2r (xd)
uc3 (xd) = min(xd) + 3r (xd)

...

ucm−1 (xd) = min(xd) + (m − 1)r (xd)
ucm (xd) = max(xd)

(1)

The width of the interval r is obtained by:

r (xd) =
max(xd) −min(xd)

m
(2)

The minimum value is the lower limit of the first class. The
utmost value is the upper limit of the m-th class. The upper
limit and the value of k, which is the magnitude of the gap
between classes are used to determine the lower limits of the
subsequent class up to the m-th class. This ensures that the
class boundaries do not overlap (Resti et al., 2023) ,
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lc1 (xd) = min(xd)
lc2 (xd) = u

c
1 (xd) + k

lc3 (xd) = u
c
2 (xd) + k

...

lcm−1 (xd) = u
c
m−2 (xd) + k

lcm (xd) = ucm−1 (xd) + k

(3)

To transform using the concept of fuzzy set theory, let X be
the universal set, X̃d be the fuzzy set is obtained from X . The
fuzzy set X̃d in the universal set X is defined as set of ordered
pairs x f and the fuzzy membership function 𝜇xd (x f ) (Resti
et al., 2023) ,

X̃d =
{(
x f , 𝜇xd (x f )

)
| x f ∈ X

}
(4)

The fuzzy membership function 𝜇X̃d
(x f ) visualize the de-

gree of membership of each given fuzzy set value X̃d . This
function is given as 𝜇X̃d

(x f ) : X → [0, 1] where each element
x f of X is mapped to a value in the interval [0, 1]. Fuzzy mem-
bership functions can represent or combine all categories of
input variables. Variations in the combination of these fuzzy
membership functions can produce different performances
(Kresnawati et al., 2024) .

In this work, we proposed four combinations of the fuzzy
membership functions in constructing the DTID3 single model
which composes an ensemble model. Each combination con-
sists of three membership functions representing the first to the
third category. The first combination consists of fuzzy mem-
bership functions: decreasing linear, triangular, and increasing
linear. The second and third combinations are similar to the
first combination, but for the second category, the fuzzy mem-
bership functions are Gaussian, triangular, and trapezoidal,
respectively.

Equations 5 and 6 provide the decreasing and increasing
linear fuzzy membership function, separately. Let a and b be
real numbers with a<b, the decreasing linear fuzzy membership
function with two parameters, a,b, is represented by Resti et al.
(2023) and Bhattacharyya and Mukherjee (2021) ,

𝜇X̃d
(x f ; a, b) =


1, x f ≤ a
b−x f
b−a , a ≤ x f ≤ b
0, x f ≥ b

(5)

The decreasing linear fuzzy membership function has also
two parameters, a,b and represented by Resti et al. (2023) and
Bhattacharyya and Mukherjee (2021) ,

𝜇X̃d
(x f ; a, b) =


0, x f ≤ a
x f −a
b−a , a ≤ x f ≤ b
1, x f ≥ b

(6)

Equations 7, 8, and 9 define the Gaussian, triangular, and
trapezoidal fuzzy membership function, successively. A Gaus-
sian fuzzy membership function with two parameters a,b, is
written as in 8, where a is the mean (center) and b is the standard
deviation (width) of the data (Muludi et al., 2024; Setiawan
et al., 2020; Rutkowski, 2004),

𝜇 x̃d (x f ; a, b) = exp
(
−

( x − a
b

)2)
(7)

Suppose a, b, and c are real numbers with a<b<c. The
triangular fuzzy membership function with three parameters
a,b,c, is written as Resti et al. (2023) and Rutkowski (2004) ,

𝜇 x̃d (x f ; a, b , c) =


0, x f ≤ a
x f −a
b−a , a ≤ x f ≤ b
c−x f
c−b , b ≤ x f ≤ c
0, x f ≥ c

(8)

Let a b,c, and d are real numbers with a<b<c<d, the trape-
zoidal fuzzy membership function with four parameters, a,b,c,d,
is presented as Resti et al. (2023) and Rutkowski (2004) ,

𝜇 x̃d (x f ; a, b , c , d) =



0, x f ≤ a
x f −a
b−a , a ≤ x f ≤ b
1, b ≤ x f ≤ c
d−x f
d−c , c ≤ x f ≤ d
0, x f ≥ d

(9)

The discretized data using both crisp set and fuzzy set mem-
bership concepts are then used to predict the axial surface
roughness using a decision tree model. The fuzzy discretization
parameters are obtained using a tuning system. The concept of
the decision tree model is to break down the complex decision-
making process into simpler ones based on information gain
and entropy of predictor variables. Let S and Sc provide the
total number of objects and the total number of objects in the
c-category of the predictor variable X. Pc and Pcf be the prior
probabilities of the c-th category of the predictor variable X,
which are discretized using the crisp and the fuzzy sets, re-
spectively. Equations 10 - 13 presents the information gain,
the crisp entropy, the fuzzy entropy, and the fuzzy probability
(Kresnawati et al., 2024) .

Information Gain(S , X) = Entropy(S)−
kX∑︁
c=1

|Sc |
|S | Entropy(Sc)

(10)

Entropy(Sc) =
kX∑︁
c=1

−Pc log2 Pc (11)
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Table 2. Crisp and Fuzzy Discretization Parameter

Predictor variable of decision tree
model

Category (m)

1 2 3

Crisp Discretization (DT1) [a, b] [a, b] [a, b]
Vc [0, 0.332] [0.333, 0.666] [0.667, 1]
fz [0, 0.332] [0.333, 0.666] [0.667, 1]
ax [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt1 [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt2 [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt3 [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt4 [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt5 [0, 0.332] [0.333, 0.666] [0.667, 1]
Rt6 [0, 0.332] [0.333, 0.666] [0.667, 1]

Fuzzy Discretization using
Linear-Gaussian Function (DT2)

[a, b] [𝜇, 𝜎2] [a, b]

Vc [0, 0.867] (0.500, 0.118) [0.833, 1]
fz [0, 0.667] (0.525, 0.075) [0.833, 1]
ax [0, 0.667] (0.500, 0.140) [0.833, 1]
Rt1 [0, 0.667] (0.241, 0.019) [0.833, 1]
Rt2 [0, 0.667] (0.343, 0.017) [0.833, 1]
Rt3 [0, 0.667] (0.364, 0.033) [0.833, 1]
Rt4 [0, 0.667] (0.297, 0.022) [0.833, 1]
Rt5 [0, 0.667] (0.199, 0.018) [0.833, 1]

Fuzzy Discretization using
Linear-Triangular Function

(DT3)
[a, b] [a, b , c] [a, b]

Vc [0, 0.567] [0.233, 0.650, 0.857] [0.833, 1]
fz [0, 0.517] [0.258, 0.468, 0.917] [0.833, 1]
ax [0, 0.667] [0.233, 0.558, 0.967] [0.833, 1]
Rt1 [0, 0.767] [0.333, 0.469, 0.957] [0.913, 1]
Rt2 [0, 0.767] [0.383, 0.609, 0.957] [0.913, 1]
Rt3 [0, 0.747] [0.508, 0.785, 0.947] [0.873, 1]
Rt4 [0, 0.867] [0.343, 0.715, 0.937] [0.873, 1]
Rt5 [0, 0.667] [0.333, 0.575, 0.417] [0.833, 1]

Fuzzy Discretization using
Linear-Trapezoidal Function

(DT4)
[a, b] [a, b , c , d] [a, b]

Vc [0, 0.567] [0.283, 0.404, 0.525, 0.767] [0.833, 1]
fz [0, 0.517] [0.258, 0.423, 0.588, 0.917] [0.833, 1]
ax [0, 0.667] [0.233, 0.472, 0.705, 0.957] [0.833, 1]
Rt1 [0, 0.767] [0.333, 0.479, 0.625, 0.957] [0.913, 1]
Rt2 [0, 0.767] [0.383, 0.527, 0.670, 0.957] [0.913, 1]
Rt3 [0, 0.747] [0.373, 0.509, 0.645, 0.947] [0.873, 1]
Rt4 [0, 0.747] [0.408, 0.543, 0.678, 0.947] [0.873, 1]
Rt5 [0, 0.667] [0.333, 0.554, 0.375, 0.417] [0.833, 1]

Entropy(Sc f ) =
kX∑︁
c=1

−Pc f log2 Pc f (12)
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Pc f =
F∑︁
f =1

Pc 𝜇c f (13)

This model is nonparametric so it does not use any statis-
tical assumptions generally related to prediction models. For
examples normality, homogeneity, linearity, and so on.

Figure 3. Monte Carlo Resampling

Each of the proposed models is then evaluated for its per-
formance using metrics determined based on a confusion ma-
trix for each class. Determining the model performance of
AISI1045 surface roughness prediction for multiclass J, j=1,2
... , J based on accuracy, recall, precision, F1-score, and area
under curve (AUC) values (Kresnawati et al., 2024; Sokolova
and Lapalme, 2009), respectively, use Equations 14-18.

Accuracy =

∑J
j=1 (TPj +TN j)∑J

j=1 (TPj + FPj + FN j +TN j)
(14)

Precision =

∑J
j=1TPj∑J

j=1 (TPj + FPj)
(15)

Recall =

∑J
j=1TPj∑J

j=1 (TPj + FN j)
(16)

F1Score =
2 × Precision × Recall
Precision + Recall (17)

AUC =
1
2

( ∑J
j=1TPj∑J

j=1 (TPj + FN j)

)
+1
2

( ∑J
j=1TN j∑J

j=1 (TN j + FN j)

)
(18)

For the j-th surface roughness type, let true positives (TPj)
and true negatives (TNj) be the proper prediction. False pos-
itives (FPj) occur when an outcome is incorrectly predicted
as the j-th surface roughness type when it is, in fact, not the
j-th surface roughness type (negative). A false negative (FNj)
occurs when a result is incorrectly predicted as not the j-th
surface roughness type when it is the j-th surface roughness
type (positive).

We proposed an ensemble method of multiple decision
trees, as described in Figure 2. The single prediction model
consists of one DT model with crisp discretization (DT1) and
three DT models with fuzzy discretization, each of which has
a different combination of membership functions, namely
linear-Gaussian (DT2), linear-triangular (DT3), and linear-
trapezoidal (DT4). Linear in the last three models represents
the functions used for the first and third categories, which are
decreasing and increasing linear fuzzy membership functions
respectively. In contrast, Gaussian, triangular, and trapezoidal
each represent the second category in each model. Three of
the four single prediction models are combined to build an en-
semble method so that there are four ensemble models (Resti
et al., 2024) . The final prediction is obtained by integrating the
predictions of these models through a voting system (Karlos
et al., 2020) .

Figure 4. Surface Roughness Prediction Based on Crisp
Discretization in Decision Tree

3. RESULTS AND DISCUSSION

3.1 Modeling of Surface Roughness
The data obtained in this study for both predictor (indepen-
dent) and dependent variables are summarized in Table 1.
The independent variables are machining factors and tangen-
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tial surface roughness. The machining factors are cutting speed
m/min (Vc), feed motion mm/tooth (fz), and axial depth of cut
(ax). The dependent variable is axial surface roughness (Ra)
is obtained in five grades according to International Standard
Organization (ISO). The five grades are N3 - N7.

Figure 5. Surface Roughness Prediction Based on a
linear-Gaussian fuzzy Discretization in Decision Tree

Figure 6. Surface Roughness Prediction Based on a
Combination of Linear-Triangular Fuzzy Discretization in
Decision Tree

The axial surface roughness is a universal standard for steel

surface roughness. It is the arithmetic average of the absolute
value of the distance between the measured profile and the
center profile. The tangential roughness (Rt) is the distance
between the reference profile and the base profile. Both axial
and tangential surface roughness are taken at 6 points from
each parameter variation.

In this work, each of the predictor variables is discretized
into three categories with the assumption that each category
represents a linguistic term of slow, moderate, fast (for Vc, fz,
and ax), and smooth, moderate, and rough (for Rt1 - Rt6). The
result of our proposed crisp and fuzzy discretization is given
in Table 2. The parameters of each fuzzy discretization are
obtained through system tuning.

Figure 7. Surface Roughness Prediction Based on a
Combination of Linear-Trapezoidal Fuzzy Discretization in
Decision Tree

In this work, we create multiple datasets randomly thirty
times based on Monte Carlo resampling as presented in Figure
1. The composition of learning and testing data used have
a ratio between 0.75 – 0.8 and the rest, 0.20 – 0.25 (Resti
et al., 2023) . Research Kresnawati et al. (2024) and Resti et al.
(2023) shows that the performance of a model from a sampling
based on the same holdout can produce different performance.
This occurs due to random sampling, therefore sampling based
on the Monte Carlo concept is needed (Figure 3).

The modeling results using crisp sets and fuzzy sets are
given in a tree diagram that displays the splits and rules in
generating surface roughness-type predictions. Although the
dataset has five classes, the random division of learning data
and testing data means that not all learning data contains all
classes of surface roughness in the dataset. For the decision
tree model with crisp discretization, the tree diagrams based
on the first Monte Carlo resampling are presented in Figure 4.
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Figure 8. Performance of Single DT models

As shown at the root node in Figure 4, the initial distribution
of observations in each class in this first resampling of Monte
Carlo has probabilities of 0.01, 0.14, 0.34, 0.45, and 0.03,
respectively for the first to fifth classes. The model in Figure 2
shows that only three classes of surface roughness of AISI 1045
are involved in the modeling, namely the second, third, and
fourth classes, while the first and fifth classes are not involved.
This incident occurs because the class has a very small number
of observations, so in the model built, the observations are
not distributed across the class. In this model, the important
variables are Rt3, Rt4, and Vc where Rt3 is the root node. The
observation predictions into classes of surface roughness based
on the predictor variables are built based on three splits and
four rules, where the observations predicted into the second
and fourth classes each have one rule, while the third class has
two rules.

The four rules are presented below:
Rule 1: If Rt3<2, and Rt4<2, and Vc<2, then the observation is
predicted into class 2 (grade N4).
Rule 2: If Rt3<2, and Rt4≥2, then the observation is predicted
into class 3 (grade N5).
Rule 3: If Rt3<2, and Rt4<2, and Vc≥2, then the observation is
predicted into class 3 (grade N5).
Rule 4: If Rt3≥2, then the observation is predicted for class 4
(grade N6).

The tree diagram for the decision tree model with a linear

Gaussian fuzzy discretization, which is based on the initial
Monte Carlo resampling, is illustrated in Figure 5.

The model in Figure 7 shows there are only two classes
of surface roughness of AISI 1045 involved in the modeling,
third and fourth classes. The important variable of this model
is Vc, that is the root node. The observation has one split and
two rules, the observations are predicted into the two and third
classes. The third class has one rule, while the fourth class has
three rules.

The four rules are presented below:
Rule 1: If Vc≥2, then the observation is predicted into class 3
(grade N5).
Rule 2: If Vc<2, then the observation is predicted for class 4
(grade N6).

Figure 6 illustrates the tree diagram for the decision tree
model with linear-triangular fuzzy discretization, which is pred-
icated on the initial Monte Carlo resampling. Each Monte
Carlo resampling of each model has the initial distribution of
observations in each class including the first resampling. In
this work, the largest to the smallest probability is owned by
the fourth, third, second, fifth, and first classes respectively.
The model in Figure 5 also shows there are only three classes
of surface roughness of AISI 1045 involved in the modeling,
namely the second, third, and fourth classes since the fifth and
first classes have a very small number of observations and are
not included in the observations involved in the model. In this
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model, the important variables are Rt1, Vc, fz, and ax where Rt1
is the root node. The observation has six splits and seven rules,
the observations predicted that the second and third classes
each have two rules, while the fourth class has three rules.

The seven rules are presented below:
Rule 1: If Rt1<2, and Vc≥3, and fz<2, and ax≥2, then the ob-
servation is predicted into class 2 (grade N4).
Rule 2: If Rt1<2, and Vc<2, and fz<2, then the observation is
predicted into class 2 (grade N4).
Rule 3: If Rt1<2, and Vc≥3, and fz≥2, and ax≥2, then the
observation is predicted into class 3 (grade N5).
Rule 4: If Rt1<2, and Vc<2, and fz≥2, then the observation is
predicted into class 3 (grade N5).
Rule 5: If Rt1<2, and Vc≥3, and ax<2, then the observation is
predicted for class 4 (grade N6).
Rule 6: If Rt1<2, and Vc=2 to 3, then the observation is pre-
dicted into class 4 (grade N6).
Rule 7: If Rt1≥2, then the observation is predicted for class 4
(grade N6).

Table 3. Average Performance of Single DT Models

Single
Model

Accuracy Recall Precision
F1

score
AUC

DT1 78.50 47.36 67.25 55.39 66.28
DT2 74.02 46.02 54.42 49.87 64.05
DT3 75.34 40.05 53.48 45.79 61.10
DT4 80.73 48.53 73.47 58.44 67.72

For the decision tree model with linear-trapezoidal fuzzy
discretization, the tree diagram based on the first Monte Carlo
resampling is presented in Figure 7.

The model in Figure 7 shows there are only two classes
of surface roughness of AISI 1045 involved in the modeling,
third and fourth classes. The important variables of this model
are Rt1, Rt3, and Rt4, where Rt4 is the root node. The ob-
servation has three splits and four rules, the observations are
predicted into the third and fourth classes. The third class has
one rule, while the fourth class has three rules. The four rules
are presented below:
Rule 1: If Rt4<2, and Rt3<2, and Rt1<2, then the observation
is predicted for class 3 (grade N5).
Rule 2: If Rt4<2, and Rt3<2, and Rt1≥2, then the observation
is predicted for class 4 (grade N6).
Rule 3: If Rt4≥2, then the observation is predicted for class 4
(grade N6).
Rule 4: If Rt4<2, and Rt3≥2, then the observation is predicted
for class 4 (grade N6).

3.2 Model Performance of Surface Roughness Prediction
The performance of the surface roughness prediction model
with the Monte Carlo resampling technique using each of the
single DT models is presented in Figure 8.

The average and standard deviation of the performance of
the four single DT models are presented in Table 3 and Table
4.

Table 4. The Standard Deviation of The Performance of The
Single DT Models

Single
Model

Accuracy Recall Precision
F1

score
AUC

DT1 0.63 2.89 5.00 0.56 1.73
DT2 0.47 3.59 2.88 2.09 3.31
DT3 0.99 2.01 2.98 0.70 2.33
DT4 1.00 2.72 2.87 1.08 2.84

Based on the seven performance measures in Table 2, it
can be seen that the average performance of the DT4 model
provides the highest value. Further exploration is needed to
obtain surface roughness prediction performance.

Table 3 shows that the models that have the lowest standard
deviation for average accuracy, recall, precision, F1 score, and
AUC are DT2, DT3, DT4, DT1, and also DT1 for F1 score,
respectively. None of the models have the lowest standard
deviation for all performance metrics. Likewise for the highest
standard deviation. Further exploration is needed to obtain
surface roughness prediction performance with a standard de-
viation that is inversely proportional to its performance. The
single method or model that composes the ensemble model
must be a different method or model. Table 4 and Table 5
present statistical tests to support their use in building ensemble
models.

ANOVA as presented in Table 4 shows that with a 5% error
rate, all four proposed single DT prediction models are signif-
icantly different. Exploration related to the details of which
pairs of prediction models are different including the measured
metrics is presented in Table 5.

With critical Q values of 0.57, 2.01, 2.5, 0.88, and 1.84
respectively for accuracy, recall, precision, specificity, and F1
score, Table 5 strengthens the evidence that the four proposed
Single DT prediction models differ in all performance metrics,
except precision in the DT with fuzzy discretization model.
However, in the multiclass case for surface roughness predic-
tion, the F1 score metric is more important than precision,
because the F1 score balances the false negative and false posi-
tive values in each class. The statistical test also informs that
there is a significant performance improvement from the DT1
model to the DT4 model.

For ensemble model performance of the four single predic-
tions for surface roughness prediction is given in Table 7. It
shows that the ensemble model of all proposed DT with fuzzy
discretization (DT2, DT3, and DT4) has the highest value on
all metrics considered in measuring model performance, so it
is decided that the ensemble model of all proposed DT with
fuzzy discretization (DT2, DT3, and DT4) is the best.

The prediction methods proposed in this paper, both single
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Table 5. ANOVA of DT Single Models

Metrics Source of Var. Sum of Squares Mean Squares F p-Value F-Criteria

Accuracy between 832.86 277.62 428.61 1.41×10−62

within 75.14 0.65
Recall between 1277.40 425.80 52.12 2.08×10−21

within 947.62 8.17
Precision between 8673.25 2891.08 229.36 1.36×10−48 2.68

within 1462.17 12.60
F1 score between 2864.44 954.81 139.17 2.81×10−38

within 795.86 6.86
AUC between 749.98 249.99 62.06 5.22×10−24

within 467.28 4.03

Table 6. Ad Hoc Post-Test of DT Single Models

Models Comparison Absolute Mean Difference
Accuracy Recall Precision F1 score AUC

DT1 vs DT2 4.49 32.48 24.08 28.64 14.46
DT1 vs DT3 3.17 38.85 25.02 32.71 17.41
DT1 vs DT4 2.23 29.97 5.03 20.06 10.78
DT2 vs DT3 1.32 39.66 0.54 28.22 12.92
DT2 vs DT4 6.72 25.48 0.55 15.57 6.29
DT3 vs DT4 4.49 26.80 1.87 16.89 7.62

methods involving crisp or fuzzy discretization, and ensemble
methods built from combinations of single methods, do not
require certain statistical assumptions such as normality, ho-
mogeneity, linearity, or others so that they are nonparametric
types. It’s just that to carry out the discretization process, the

Table 7. Ensemble Performance of Multiple Decision Tree

Ensemble
Model

Accu-
racy

Recall
Prec-
ision

F1
score

AUC

DT1, DT2,
DT3

73.33 35.22 36.79 35.90 58.02

DT1, DT2,
DT4

82.64 51.62 53.72 52.56 69.62

DT1, DT3,
DT4

81.33 51.62 56.29 53.86 69.04

DT2, DT3,
DT4

82.67 55.19 53.97 54.57 71.02

predictor variables must be of numeric type. These methods
can be implemented for all cases or materials, there are no re-
strictions related to dataset size. In statistical machine learning,
the generalization of model performance for small sizes can be
handled using bootstrap resampling, of them. By using a pre-
diction model that uses a statistical machine learning approach
as proposed in this work, it is expected to save time and costs
compared to traditional methods.

4. CONCLUSIONS

This paper predicts the axial surface roughness of AISI 1045
steel using ensemble methods. Four single prediction models
are proposed, one decision tree model with crisp discretization
(DT1) and three decision tree models with fuzzy discretization
(DT2, DT3, and DT4). The ensemble method is then built
from the combination of three single decision tree prediction
models because the final prediction system uses a voting system.
The results of this study indicate that not all proposed ensemble
models are built to have better performance than the perfor-
mance of single prediction models. For the four ensemble
models formed from the combination of three single decision
tree models, only the combination of DT1, DT2, and DT3
did not perform better than the single model. The other three
ensemble methods had better accuracy, recall, and AUC than
all the proposed single models with values of 81.33 - 82.67%,
51.62 - 55.19%, and 69.04 - 71.02%, respectively. Thus, the
research objective has been achieved, although the performance
improvement has not covered all metrics. Further research
needs to explore different types and combinations of fuzzy
membership functions with different numbers of categories
as prediction methods. For the axial surface roughness level
of AISI 1045, it is also necessary to explore other machining
systems such as minimum quantity lubrication (MQL).
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