Standardization of Ethanolic Extract of Tahongai Leaves (*Kleinhovia hospita* L.)

Indah Solihah*1, Mardiyanto1, Soilia Fertilita2, Herlina1, Oktia Charmila1

1 Department of Pharmacy, Faculty of Mathematic and Natural Sciences, Sriwijaya University, Indonesia
2 Department of Medical, Faculty of Medical, Sriwijaya University, Indonesia

*Corresponding author e-mail : indahsolihah26614@gmail.com

ABSTRACT

Extract is basic material for herbal drug. Herbal drugs formulation requires consistent of biological activity, a consistent chemical profile, or simply a quality assurance programs that can be achieved by standardizing the extracts. The leaves of tahongai (*Kleinhovia hospita* L.) have been traditionally used in Komering ethnic groups as phytotherapy to cure the inflammation related diseases including cancer, furuncles, polyps, and tonsillitis. The aim of this study was to standardize the quality of ethanolic extract of tahongai leaves by determining the specific and non specific parameters of the extract. The preliminary phytochemical analysis revealed presence of alkaloids, flavonoids, saponins, tanins, and steroids in the extract. The result of specific parameters analysis of the extracts showed that the organoleptic properties of ethanolic extract of tahongai leaves were thick, brownish black, has distinctive odor, astringent with slightly bitter taste, the water and ethanol soluble extractive content were 19.263% ± 0.95 and 18.30% ± 0.51 respectively. The nonspecific parameters analysis of the extract showed that the extract’s density was 1.413 g/mL ± 0.04, the water content value was 21.16% ± 0.55, total ash content was 15.64% ± 0.75, acid insoluble ash content was 8.282% ± 0.28, Pb contamination content was 3.67 ppm, Cd contamination content was <0,0043 ppm, total bacteria contamination was 90.5 x 10^1 colony/g, and the total mold and yeast contamination was 1 x 10^1 colony/g.

1. INTRODUCTION

Tahongai (*Kleinhovia hospita* L.) has been widely used as traditional medicine by Komering ethnic groups, South Sumatera, Indonesia to treat inflammatory diseases such as tumors, ulcers, polyps, tonsils, and dysmenorrhea. Tahongai leaves have been proven to have strong antioxidant activity against DPPH free radical agents (Arung et al., 2009). Decocta of tahongai leaves also have the activity as treatment for acute liver disease (Raflizar and Sihombing, 2009). Raflizar (2009) proved that tahongai leaves was safe, did not cause toxicity on the liver or kidneys based on the animal experiments. Because of the potency of tahongai as herbal medicine, it is necessary to standardize the tahongai extract.

Standardization is a system to ensure that every packet of medicine that is being marketed has the correct substances in the correct amount and will induce its therapeutic effect (Ekka et al., 2008). It is an important step to maintain the consistency of biological activity, chemical profile, or simply a quality assurance programs for production and manufacturing of herbal drugs preparation (Bajpai et al, 2012). Furthermore, extract standardization can also increase the economic value of herbal medicine producers (Saifudin et al., 2011). This standardization is carried out by specific and non specific parameters based on generalized standardization parameters of medicinal plant extract issued by Indonesian Ministry of Health.

2. EXPERIMENTAL SECTION

2.1. Chemicals

The chemicals used of this study were ethanol, aquadest, Mayer reagent, Wagner reagent, Dragendorff reagent, concentrated sulfuric acid, ammonia, chloroform, concentrated hydrochloric acid, magnesium powder, sodium hydroxide, iron (III) chloride, anhydrous acetic acid, formic acid, acetic acid, peptone, plate count agar (PCA), distilled water agar (DWA), potato dextrose agar (PDA).

2.2. Plant materials

The tahongai leaves were collected from Belitang, Ogan Komering Ulu District of South Sumatera, Indonesia. The sample was determined at Herbarium Department of Biology, Faculty...
Sholihah et al. 2018 / Science & technology Indonesia 3 (1) 2018: 14-18

of Mathematics and Natural Science, Andalas University with letter number of 332/K-ID/ANDA/VIII/2017. Sampel was thoroughly washed with tap water, sorted while wet, dried in the shade, and grinded into powder.

2.3. Preparation of extract

Five hundred grams of powdered simplicia was weighed, then added ethanol 70% as much as 3.5 L and macerated for 48 hours at room temperature while stirred occasionally. Next, the obtained macerate was filtered using a paper-coated funnel to obtain the filtrate and then the residue was remacerated again twice for 24 hours to maximize the withdrawal of the unextracted chemical compounds in the previous maceration process. The obtained filtrate was concentrated using rotary evaporator at 70°C until thick extract from tahongai leaves obtained (Dewi et al, 2014). The thick extract was weighed and yield percentage of extract calculated by using equation 1.

\[
\% \text{ Yield} = \frac{\text{Obtained thick extract}}{\text{Simplicia used in extraction}} \times 100 \ldots (1)
\]

2.4. Alkaloid Test

One g of sample was crushed in the mortar, a small amount of chloroform and sand were added, then 5 mL of 0.05 N ammonia solutions in chloroform was added. The mixture was shaken for several minutes, then filtered into the test tube. \(H_2SO_4 \) 2N was added into the filtrate and shaken regularly, leaving it to form two layers. The top solution (water phase) is separated and tested with May er, Wagner, and Dragendorff reagents. Sediment formed indicates the presence of alkaloid group compounds (Al-Daihan and Bhat, 2012).

2.5. Flavonoid Test

A total of 0.5 g of sample was put into the test tube, added 5 mL of ethanol, and heated for 5 minutes. The extract then filtered and the filtrate was added a few drops of concentrated HCl. Next, added 0.2 mg of magnesium powder approximately. If it appears red, it shows the presence of flavonoid compounds (Al-Daihan and Bhat, 2012).

2.6. Saponin Test

A total of 500 mg sample was added into 10 mL of hot water. Then cooled and shake firmly. If there was a stable foam as high as 1 cm or more it showed the presence of saponin group compounds. Furthermore, addition of 1 drop of HCl 2 N will not make the foam disappear (Indonesian Ministry of Health, 1977).

2.7. Tannin Test

A total of 500 mg of sample was added into 50 mL of distilled water, then boiled for 15 minutes and chilled. 5 mL of filtrate were taken and dripped with FeCl3, 1%. If the color turned into greenish black, it shows the presence of tannin class compounds (Al-Daihan and Bhat, 2012).

2.8. Steroid and Triterpenoid Test

A total of 2 g samples were crushed in mortar, a small amount of chloroform and sand was added, then added 5 mL of 0.05 N ammonia solutions into chloroform. The mixture was shaken for several minutes, then filtered into the test tube. \(H_2SO_4 \) 2N was added into the filtrate and shaken regularly, leaving it to form two layers. The bottom solution was separated and dropped onto the drop plate, allowed to dry. After drying, anhydrous acetic acid was added and stirred evenly. Subsequently inserted 3 drops of concentrated sulfuric acid and observed the color that occurred. If the color was blue or green, then this indicates the presence of steroid compounds (Al-Daihan and Bhat, 2012). If the color was orange or purple, it shows the existence of triterpenoid group compounds (Malla et al., 2013).

2.9. Specific Parameter Determination of Extract

Organoleptic Analysis of the Extract

The organoleptic parameters of tahongai leaves extract were described about the shape, color, odor, and taste. Shape parameters include solid, dry powder, thick, and liquid. Color parameters such as yellow and brown. Parameters of aromatic odor or non odor and taste parameters include sweet, bitter, and others (Indonesian Ministry of Health, 2000).

Water Soluble Extractive Content

Samples were weighed 5 g then filled into closed flask. A total of 100 mL of chloroform saturated water was added into the flask. Stirring was done repeatedly for the first 6 hours and for the next 18 hours extract was ignored. The filtrate of 20 mL from soaking result was evaporated. The filtrate was then heated at temperature 105°C to a constant weight. The percentage of water soluble extract was calculated by using Equation 2 (Indonesian Ministry of Health, 2000).

\[
\text{Water Soluble} = \frac{\text{Dried filtrate (g)}}{\text{Final weight of filtrate (g)}} \times 100 \ldots (2)
\]

Ethanol Soluble Extractive Content

The sample was carefully weighed 3 g, put into a flask and 100 mL of 95% ethanol was added. Stirring was done repeatedly for the first 6 hours and left it for the next 18 hours. Twenty mL of filtrate from the soaking result was evaporated in a preheated cup. The filtrate was then heated at a 105°C to a constant weight. Percentage of ethanol soluble extractive content was calculated using Equation 3 (Indonesian Ministry of Health, 2000).

\[
\text{Ethanol Soluble} = \frac{\text{Dried filtrate (g)}}{\text{Final weight of filtrate (g)}} \times 100 \ldots (3)
\]

2.11. Non Specific Parameter Determination of Extract
Density of extract

Clean and dry pycnometer was weighed (W0). Then calibrate by determining pycnometer weight and water at 25°C then weighed (W1). The ethanolic extract of tahongai leaves was set to 20°C and put into empty pycnometer, remove the excess extract, set pycnometer containing extract temperature at 25°C then weighed (W2). The density of extract was calculated based on Equation 4 (Indonesian Ministry of Health, 2000).

\[
\text{Density} = \frac{W_2 - W_0}{W_1 - W_0} \ldots (4)
\]
2.12. Water Content

Water content was determined using gravimetric method. Ten grams of extract was carefully weighed. The extract was dried at 105°C for 5 hours and weighed. The process was continued and weighed after 1 hour until the difference between 3 consecutive weighings was no more than 0.25% (Ministry of Health, 2000).

\[
\text{Water Content} = \frac{\text{initial weight} - \text{final weight}}{\text{initial weight}} \times 100\% \quad (5)
\]

2.13. Total Ash Content

A total of 2 - 3 g of extract was put into the furnace. The temperature was gradually increased up to 600°C and left for 4 hours, then cooled in desiccator and weighed. The total ash content was calculated based on the weight of the residue and sample, expressed using Equation 6 (Indonesian Ministry of Health, 2000).

\[
\text{Total Ash Content} = \frac{\text{Residue (g)}}{\text{Sample (g)}} \times 100\% \quad (6)
\]

2.14. Acid Insoluble Ash Content

The ash sample from total ash content analysis was boiled in 25 mL of dilute chloride acid for 5 minutes. The insoluble part of the acid-ash mixture was filtered through ash-free filter paper, washed with hot water, and chilled until the weight was fixed. The acid insoluble ash content was calculated on the weight of the test material, expressed using Equation 6 (Indonesian Ministry of Health, 2000).

2.15. Total Pb and Cd content

Total Pb and Cd content on ethanolic extract were determined with wet destructive method using AAS (Atomic Absorption Spectroscopy) (Indonesian Pharmacopeia, 1979). Sample were tested in the Integrated Testing Laboratory, Faculty of Mathematics and Natural Science Sriwijaya University.

2.16. Microbial Contamination

Total Plate Count

A total of 5 tubes were filled with 9 mL peptone dilution fluids (PDF). The homogenization results from the preparation of the sample were plated by 1 mL dilution into the tube containing the first PDF diluent until 10^-2 dilution was obtained and shaken to homogeneous, further diluting until reached the 10^-6 dilution. One mL of each dilution was poured into a petri dish and duplicated, then poured 15 - 20 mL of medium plate count agar (PCA). Petri dish was shaken and treated in such way until the suspension spread evenly. To determine the sterility of the media and diluent, a control test (blank) was made. After the media was solidified, the petri dish was incubated at 35 - 37°C for 24 - 48 hours with the upside down position. The number of growing colonies was observed and calculated (Indonesian Ministry of Health, 2000).

Mold and yeast count

Filled a total of 3 pieces of tube with 9 mL distilled water agars (DWA) 0.05%. The homogenization of the sample preparation was 1 mL dilution of 10^-1 dilution into the first DWA tube until 10^-2 dilution was obtained and shaken until homogeneous, then further dilution was made up to 10^-4. A total of 0.5 mL of each dilution was poured on the surface of the PDA, immediately shaken while rotated around the suspension to spread evenly and made duplo. To determine the sterility of the media and diluent, blank test was made by pouring the media on one petri dish and another petri dish filled with medium and diluent, then left to solidify. All petri dishes were incubated at 20 – 25°C for 5 - 7 days. After 5 days of incubation, a growing number of fungal colonies were observed and also at 7 days incubation. The plate with 40 - 60 colonies of mold/yeast was observed (Indonesian Ministry of Health, 2000).

3. RESULT AND DISCUSSION

3.1. Extraction and phytochemical screening results

The thick extract obtained from maceration of 500 g tahongai leaves powders using 70% ethanol was 86.9 g with the percentage of 17.38%. The value of this yield percentage was influenced by the duration of extraction and the amount of solvent.

Table 1 Phytochemical screening result of Tahongai leaves

<table>
<thead>
<tr>
<th>Chemical Substance</th>
<th>Screening Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicia Ethanolic Extract</td>
<td></td>
</tr>
<tr>
<td>Alkaloid</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
</tr>
<tr>
<td>Tanin</td>
<td>+</td>
</tr>
<tr>
<td>Triterpenoid</td>
<td>-</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2 Standardization result of ethanolic extract of tahongai (Kleinhovia hospita L.) leaves

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter</td>
<td>thick, brownish</td>
<td></td>
</tr>
<tr>
<td>Organoleptic</td>
<td>black in color, has distinctive odor, asstringent with slightly bitter taste</td>
<td></td>
</tr>
<tr>
<td>Water soluble extractive content</td>
<td>19.263% ± 0.95</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol soluble extractive content</td>
<td>18.30% ± 0.51</td>
<td>-</td>
</tr>
<tr>
<td>Non specific parameter</td>
<td>Density</td>
<td>1.413 ± 0.04</td>
</tr>
<tr>
<td>Water content</td>
<td>21.16% ± 0.35</td>
<td>5 – 30%*</td>
</tr>
<tr>
<td>Total ash content</td>
<td>15.64% ± 0.75</td>
<td>-</td>
</tr>
<tr>
<td>Acid insoluble ash content</td>
<td>8.282% ± 0.28</td>
<td>-</td>
</tr>
<tr>
<td>Pb content</td>
<td>3.67 ppm</td>
<td>< 10 ppm*</td>
</tr>
<tr>
<td>Cd content</td>
<td><0.0043 ppm</td>
<td>< 0.3 ppm*</td>
</tr>
<tr>
<td>Total plate count</td>
<td>90.5 x 10^1 colony/g</td>
<td><1 x 10^4 colony/g</td>
</tr>
<tr>
<td>Mold and yeast count</td>
<td>1 x 10^4 colony/g</td>
<td>1 x 10^6 colony/g</td>
</tr>
</tbody>
</table>

Sholihah et al. 2018 / Science & technology Indonesia 3 (1) 2018: 14-18
used. Yield percentage is the percentage of raw materials that can be utilized from total raw materials, the higher the value of yield percentage indicates that the raw material has a greater chance of utilization (Kusumawati et al., 2008).

Phytochemical testing for the presence of various chemical constituents of simplicia and ethanolic leaves extract was performed using standard tests and procedures. The data reveals the presence of alkaloids, flavonoids, saponins, tannins, and steroids (Table 1).

3.2 Standardization of ethanolic extract of Tahongai (Kleinhovia hospita L.) leaves

Standardization of ethanolic extract of tahongai (Kleinhovia hospita L.) leaves was done to guarantee the quality of the final product (medicine, extract, extract product) and has certain determined constant parameter values (Indonesian Ministry of Health, 2000). Standardization of ethanolic extract of tahongai leaves was done by determining specific and nonspecific parameters of extract. The result of specific and nonspecific parameter of ethanolic extract of tahongai (Kleinhovia hospita L.) leaves can be seen in Table 2.

Determination results of this standardization require a reference to indicate that the extract meets the requirements that have been set. Ethanolic extract of tahongai leaves has no official standardization reference published by the Indonesian Ministry of Health and other sources. General values of extract requirement are based on the total plate numbers and yeast number. The total plate number obtained from ethanolic extract of tahongai leaves was 90.5 x 10^3 colonies/g. The result was still in the permitted range as it is below the maximum limit of 1 x 10^4 colonies/g that is set in the book of Monographic Extract of Medicinal Plants by Indonesian FDA. The determination of yeast number obtained was 1 x 10^2 colony/g also does not exceed the requirements set by Indonesian FDA of 1 x 10^3 colonies/g. The low growth of bacteria and mold/yeast can also caused by the active compound flavonoid contained in tahongai leaves extract inhibit the growth of bacteria or microbes contained in the extract.

CONCLUSION

Phytochemical screening of ethanolic extract of tahongai leaves (Kleinhovia hospita L.) in Belitang, South Sumatera Indonesia shows presence of alkaloids, flavonoids, tannins, saponins, and steroids. Specific and nonspecific parameters of extract standardization mostly qualified based on the parameter that set in generalized standardization parameters of medicinal plant extract by Indonesian Ministry of Health. Except water content of extract that exceed the limit, it makes the extract must be stored in low humidity or dried again before further processing.

ACKNOWLEDGMENT

Authors would like to express their gratitude toward Sriwijaya University PNBP Sateks Research Grant that made this research possible.

REFERENCES

Indonesian FDA. (2014). *Quality parameters of traditional medicine*. Jakarta, Indonesia: Indonesian FDA

