

Perturbed Trapezoid Like Inequalities

Waseem Ghazi Alshanti¹, Iqbal Mohammad Batiha^{1,2*}, Ahmad Alshanty³, Amjad Zraiqat¹, Iqbal Hamzah Jebril¹, Ma'mon Abu Hammad¹

¹Mathematics Department, Al Zaytoonah University of Jordan, Queen Alia Airport St 594, Amman, 11733, Jordan

²Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, 346, United Arab Emirates

³Cyber Security Department, Isra University, Amman, 11622, Jordan

*Corresponding author: i.batiha@zuj.edu.jo

Abstract

In our current research article, based on a general configuration of a 3-step Peano kernel, new versions of integral inequality of Ostrowski's type are developed for differentiable mappings that have second derivatives belong to L_{∞} . Then we utilized these versions to generate new perturbed trapezoid like inequalities. These new perturbed trapezoid like inequalities are proposed with error bounds smaller than and similar to those reported by previous studies. Moreover, some of the obtained perturbed trapezoid like inequalities reveal the relationship between the Euler-Maclaurin summation and the trapezoidal rule. Finally, certain implementations to numerical composite quadrature rules are provided for completeness.

Keywords

Ostrowski Inequality, Euler-Maclaurin Summation Formula, Perturbed Trapezoid Type Inequality

Received: 26 November 2022, Accepted: 26 February 2023

<https://doi.org/10.26554/sti.2023.8.2.205-2011>

1. INTRODUCTION

Establishing appropriate numerical formulae to introduce an accurate approximation of certain operators are regarded necessary to solve many mathematical problems (Albadarneh et al., 2021a,b; Batiha et al., 2022; Batiha, 2011). Definite integrals of bounded functions over given intervals are sometimes difficult or even impossible to be evaluated. In such cases, the function could be complicated or not explicitly defined. Therefore, depending on varies functional values, the quadrature rules such as trapezoidal and Simpson's rules come into play. The composite trapezoidal rule is known as follows:

$$\int_v^{\omega} \varphi(\kappa) d\kappa \cong \frac{\lambda}{2} \left[\varphi(v) + 2 \sum_{i=1}^{m-1} \varphi(\zeta_i) + \varphi(\omega) \right], \quad (1)$$

where $\varphi : [v, \omega] \rightarrow \mathbb{R}$ is bounded and $v < \zeta_1 < \dots < \zeta_{m-1} < \omega$ is an equally spaced partition of $[v, \omega]$ that generates m segments each of width $\lambda = (\omega - v) / m$.

In numerical integration theory, throughout the past few decades, Ostrowski's integral inequality (Ostrowski, 1937) and also inequalities of Ostrowski's type have been utilized to analyze errors in quadrature rules (Alshanti et al., 2022). Ostrowski's inequality can be described in the following manner.

Theorem 1 Assume $g : [v, \omega] \rightarrow \mathbb{R}$ is a continuous mapping on

$[v, \omega]$ and g' is bounded on (v, ω) , then $\forall x \in [v, \omega]$, we get

$$\left| g(x) - \frac{1}{\omega - v} \int_v^{\omega} g(x) dx \right| \leq \left[\frac{1}{4} + \left(\frac{x - \frac{v+\omega}{2}}{\omega - v} \right)^2 \right] (\omega - v) \|g'\|_{\infty}, \quad (2)$$

where

$$\|g'\|_{\infty} = \sup_{x \in [v, \omega]} |g'(x)|.$$

Many studies adopted techniques such as examining different abstract spaces or considering distinct Peano kernel to obtain effective bounds of Ostrowski's like inequalities as well as some perturbed well known quadrature rules. Within such sharp bounds, many of the computational works rely, basically, on the values of Lebesgue norms of the derivatives associated with the provided mappings. The idea is to estimate the error for fairly general functions by relating it to quadrature errors associated with a restricted class of functions, namely piecewise polynomials called Peano kernels. Then these kernels and the derivatives of the proposed functions can be used by the means of integration by parts to generate identities. Finally, by using the functional properties of the abstract space, in which these derivatives belong to, these identities can be converted into Ostrowski's like inequalities. Some of these studies can be found in (Alshanti and Qayyum, 2017; Alshanti et al., 2017;

Alshanti, 2018, 2019; Alshanti and Milovanovic, 2020; Alshanti, 2021; Amjad et al., 2022; Liu et al., 2016; Dragomir and Sofo, 2000; Liu and Park, 2017a; Liu and Lu, 2015; Liu and Park, 2017b; Al-Zoubi et al., 2019). Also, for more rigorous related approaches, we refer the reader to (Milovanović, 2017; Milovanović and Pečarić, 1976; Milovanović, 1975; Milovanović, 1977; Vasić and Milovanović, 1976; Dordević and Milovanović, 1975).

2. PREVIOUS RELATED WORKS

The inequality of Ostrowski type has been, exhaustively, studied in literatures for the cases of differentiable mappings which their second derivatives belonging to L_∞ . In 2000, Dragomir and Sofo (2000) demonstrated the next inequality of Ostrowski type.

Theorem 2 Suppose $\Omega: [\nu, \omega] \rightarrow \mathbb{R}$ be a mapping where Ω' is an absolutely continuous on $[\nu, \omega]$ and $\Omega'' \in L_\infty [\nu, \omega]$. Then

$$\begin{aligned} & \left| \int_\nu^\omega \Omega(s) ds - \frac{1}{2} \left(\Omega(\nu) + \frac{\Omega(\nu) + \Omega(\omega)}{2} \right) (\omega - \nu) \right. \\ & \quad \left. + \frac{\omega - \nu}{2} \left(\kappa - \frac{\nu + \omega}{2} \right) \Omega'(\kappa) \right| \\ & \leq \|\Omega''\|_\infty \left(\frac{1}{3} \left| \kappa - \frac{\nu + \omega}{2} \right|^3 + \frac{(\omega - \nu)^3}{48} \right), \end{aligned} \quad (3)$$

$\forall \kappa \in [\nu, \omega]$.

Liu and Park (2017a) introduced in the next inequality of Ostrowski's type.

Theorem 3 Suppose $\Omega: [\nu, \omega] \rightarrow \mathbb{R}$ is a mapping where Ω' is an absolutely continuous on $[\nu, \omega]$ and $\Omega'' \in L_\infty [\nu, \omega]$. Then

$$\begin{aligned} & \left| \frac{1}{2} \left(\frac{\Omega(\kappa) + \Omega(\nu + \omega - \kappa)}{2} + \frac{\Omega(\nu) + \Omega(\omega)}{2} \right) \right. \\ & \quad \left. - \frac{1}{2} \left(\kappa - \frac{\nu + \omega}{2} \right) \frac{\Omega'(\kappa) - \Omega'(\nu + \omega - \kappa)}{2} - \frac{1}{\omega - \nu} \right. \\ & \quad \left. \int_\nu^\omega \Omega(s) ds \right| \leq \left[\frac{1}{3} \frac{\left(\frac{\nu+3\omega}{4} - \kappa \right) (\kappa - \nu)^2}{(\omega - \nu)^3} + \frac{1}{3} \frac{\left(\frac{\nu+\omega}{2} - \kappa \right)^3}{(\omega - \nu)^3} \right] \\ & \quad (\omega - \nu)^2 \|\Omega''\|_\infty, \end{aligned} \quad (4)$$

$\forall \kappa \in [\nu, \frac{\nu+\omega}{2}]$.

Remark 1 Choosing $\kappa = \frac{\nu+\omega}{2}$ in (3) and (4) yields

$$\begin{aligned} & \left| \frac{1}{2} \left(\Omega \left(\frac{\nu + \omega}{2} \right) + \frac{\Omega(\nu) + \Omega(\omega)}{2} \right) - \frac{1}{\omega - \nu} \int_\nu^\omega \Omega(s) ds \right| \\ & \leq \frac{(\omega - \nu)^2}{48} \|\Omega''\|_\infty. \end{aligned} \quad (5)$$

Remark 2 For $\kappa = \nu$ in (4), we have the following perturbed inequality of trapezoidal type

$$\begin{aligned} & \left| \frac{\Omega(\nu) + \Omega(\omega)}{2} - \frac{(\omega - \nu)}{8} (\Omega'(\omega) - \Omega'(\nu)) - \frac{1}{\omega - \nu} \right. \\ & \quad \left. \int_\nu^\omega \Omega(s) ds \right| \leq \frac{(\omega - \nu)^2}{24} \|\Omega''\|_\infty. \end{aligned} \quad (6)$$

The estimator of (6) is smaller than the estimator of the classical trapezoidal rule.

In this paper, motivated by Dragomir and Sofo (2000) and Liu and Park (2017a), perturbed trapezoidal type inequalities with a range of estimates are obtained through considering arbitrary parameter $\hbar \in [0, 1]$. New perturbed trapezoid type inequalities are proposed with similar and smaller errors than those reported by both Dragomir and Sofo (2000) and Liu and Park (2017a), respectively.

3. MAIN RESULTS

The primary goal of this part is to establish certain integral inequalities of Ostrowski type via proposing a generalization of the 3-step linear Peano kernel (see (8) below). We consider differentiable mappings that have second derivatives belong to L_∞ to obtain the our results.

Theorem 4 Suppose $\phi: [\nu, \omega] \rightarrow \mathbb{R}$ a given mapping whereby ϕ' is an absolutely continuous over $[\nu, \omega]$ and assume that $\phi'' \in L_\infty [\nu, \omega]$. Then $\forall x \in [\nu, \nu + \hbar \frac{\omega - \nu}{2}]$ and $\hbar \in [0, 1]$, we have:

$$\begin{aligned} & \left| \frac{1}{4} [\phi(x) + \phi(\nu) + \phi(\omega) + \phi(\nu + \omega - x) + 2\hbar(\phi(\omega) \right. \\ & \quad \left. - \phi(x))] - \frac{1}{4} \left[(1 - 2\hbar) \left(x - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(x) \right. \\ & \quad \left. - \left(x - \left(\frac{\nu + \omega}{2} + \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(\nu + \omega - x) + \frac{(\omega - \nu)}{2} \right. \\ & \quad \left. \hbar \left[(\hbar - 1) \phi'(\nu) + (\hbar + 1) \phi'(\omega) \right] \right] - \frac{1}{\omega - \nu} \int_\nu^\omega \phi(t) dt \right| \\ & \leq \left[\frac{2}{3} \left(\frac{\nu + \omega}{2} - x \right)^3 + \frac{1}{3} \left(\frac{3\nu + \omega}{4} + \hbar \frac{\omega - \nu}{2} - x \right)^3 + \right. \\ & \quad \left. \frac{1}{3} \left(\frac{3\nu + \omega}{4} - x \right)^3 + \frac{(\omega - \nu)^2}{16} \left((2\hbar - 1)^2 + 1 \right) \right] \\ & \quad \left(x - \left(\nu + \hbar \frac{\omega - \nu}{2} \right) \right) + \frac{(\omega - \nu)^3}{192} \left(12\hbar^2 + 12\hbar - 2 \right) \right] \\ & \quad \frac{\|\phi''\|_\infty}{2(\omega - \nu)}. \end{aligned} \quad (7)$$

Proof: Herein, we outline the kernel $P(x, t): [\nu, \omega] \rightarrow \mathbb{R}$ by

$$P(x, t) = \begin{cases} t - \left(\nu + \hbar \frac{\omega - \nu}{2} \right), & t \in [\nu, x], \\ t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right), & t \in (x, \nu + \omega - x], \\ t - \left(\omega - \hbar \frac{\omega - \nu}{2} \right), & t \in (\nu + \omega - x, \omega], \end{cases} \quad (8)$$

$\forall x \in [\nu, \nu + \hbar \frac{\omega - \nu}{2}]$ and $\hbar \in [0, 1]$. Then we have (Alshanti and Qayyum, 2017):

$$\begin{aligned} \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) g'(t) dt = \\ \frac{1}{2} [(1 - 2\hbar) g(x) + g(\nu + \omega - x) + \hbar(g(\nu) \\ + g(\omega))] - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} g(t) dt. \end{aligned} \quad (9)$$

On choosing

$$g(x) = \left(x - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(x)$$

in equality (9), we get

$$\begin{aligned} \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) \left[\phi'(t) + \left(t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi''(t) \right] dt \\ = \frac{1}{2} \left[(1 - 2\hbar) \left(x - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(x) \right. \\ + \left(\left(\frac{\nu + \omega}{2} + \hbar \frac{\omega - \nu}{2} \right) - x \right) \phi'(\nu + \omega - x) \\ \left. + \frac{\omega - \nu}{2} \left((\hbar^2 - \hbar) \phi'(\nu) + (\hbar^2 + \hbar) \phi'(\omega) \right) \right] \\ - \frac{1}{2} [(1 + \hbar) \phi(\omega) - (\hbar - 1) \phi(\nu)] + \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt. \end{aligned} \quad (10)$$

Also, by considering (9), we obtain

$$\begin{aligned} \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) \left[\phi'(t) + \left(t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi''(t) \right] dt \\ = \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) \phi'(t) dt + \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) \left(t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi''(t) dt \\ = \frac{1}{2} [(1 - 2\hbar) \phi(x) + \phi(\nu + \omega - x) + \hbar(\phi(\nu) + \phi(\omega))] \\ - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt + \frac{1}{\omega - \nu} \int_{\nu}^{\omega} P(x, t) \left(t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi''(t) dt. \end{aligned} \quad (11)$$

Hence, from (10) and (11), we can get

$$\begin{aligned} \frac{1}{2(\omega - \nu)} \int_{\nu}^{\omega} P(x, t) \left(t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi''(t) dt \\ = \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt - \frac{1}{2} \left[\frac{(1 - 2\hbar) \phi(x) + \phi(\nu + \omega - x)}{2} + \right. \\ \left. \frac{\phi(\nu) + (2\hbar + 1) \phi(\omega)}{2} \right] + \frac{1}{2} \left[\frac{1 - 2\hbar}{2} \left(x - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(x) + \right. \\ \left. \frac{1}{2} \left(\left(\frac{\nu + \omega}{2} + \hbar \frac{\omega - \nu}{2} \right) - x \right) \right. \\ \left. \times \phi'(\nu + \omega - x) + \hbar \frac{\omega - \nu}{2} \frac{(\hbar - 1) \phi'(\nu) + (1 + \hbar) \phi'(\omega)}{2} \right]. \end{aligned} \quad (12)$$

Now, applying Hölder inequality yields

$$\begin{aligned} \left| \frac{1}{2} \left[\frac{(1 - 2\hbar) \phi(x) + \phi(\nu + \omega - x)}{2} + \frac{\phi(\nu) + (2\hbar + 1) \phi(\omega)}{2} \right] \right. \\ \left. - \frac{1}{2} \left[\frac{1 - 2\hbar}{2} \left(x - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right) \phi'(x) \right. \right. \\ \left. + \frac{1}{2} \left(\left(\frac{\nu + \omega}{2} + \hbar \frac{\omega - \nu}{2} \right) - x \right) \phi'(\nu + \omega - x) \right. \\ \left. + \frac{\omega - \nu}{2} \frac{(\hbar^2 - \hbar) \phi'(\nu) + (\hbar^2 + \hbar) \phi'(\omega)}{2} \right] \\ \left. - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \leq \frac{\|\phi''\|_{\infty}}{2(\omega - \nu)} \int_{\nu}^{\omega} |P(x, t)| \\ \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt. \end{aligned} \quad (13)$$

But

$$\begin{aligned} \int_{\nu}^{\omega} |P(x, t)| \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt \\ = \int_{\nu}^x \left| t - \left(\nu + \hbar \frac{\omega - \nu}{2} \right) \right| \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt \\ + \int_{x}^{\nu + \omega - x} \left[t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right]^2 dt \\ + \int_{\nu + \omega - x}^{\omega} \left| \left(t - \left(\nu + \hbar \frac{\omega - \nu}{2} \right) \right) \right| \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt. \end{aligned} \quad (14)$$

Now, as $x \in [\nu, \nu + \hbar \frac{\omega - \nu}{2}]$, we can obtain

$$\begin{aligned} & \int_{\nu}^x \left| t - \left(\nu + \hbar \frac{\omega - \nu}{2} \right) \right| \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt \\ &= \int_{\nu}^{\nu + \hbar \frac{\omega - \nu}{2}} \left[\left(\nu + \hbar \frac{\omega - \nu}{2} \right) - t \right] \left[\left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) - t \right] dt \\ &+ \int_{\nu + \hbar \frac{\omega - \nu}{2}}^x \left[t - \left(\nu + \hbar \frac{\omega - \nu}{2} \right) \right] \left[\left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) - t \right] dt, \end{aligned} \quad (15)$$

and

$$\begin{aligned} & \int_{\nu + \omega - x}^{\omega} \left| \left(t - \left(\omega - \hbar \frac{\omega - \nu}{2} \right) \right) \right| \left| t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right| dt \\ &= \int_{\nu + \omega - x}^{\omega - \hbar \frac{\omega - \nu}{2}} \left[\left(\omega - \hbar \frac{\omega - \nu}{2} \right) - t \right] \left[t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right] dt \\ &+ \int_{\omega - \hbar \frac{\omega - \nu}{2}}^{\omega} \left[\left(t - \left(\omega - \hbar \frac{\omega - \nu}{2} \right) \right) \right] \left[t - \left(\frac{\nu + \omega}{2} - \hbar \frac{\omega - \nu}{2} \right) \right] dt. \end{aligned} \quad (16)$$

Therefore, by referring to (13)–(16), we obtain the result (7).

4. SOME NEW PERTURBED TRAPEZOID INEQUALITIES

In this part, some novel perturbed trapezoid type inequalities are provided in light of the theoretical aspects discussed in the previous section.

Corollary 1 *Using the same assumptions of Theorem 4 and setting*

(1) $\hbar = 0$ and $x = \nu$, we get

$$\begin{aligned} & \left| \frac{\phi(\nu) + \phi(\omega)}{2} - \frac{(\omega - \nu)}{8} (\phi'(\omega) - \phi'(\nu)) \right. \\ & \left. - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \leq \frac{(\omega - \nu)^2}{24} \|\phi''\|_{\infty} \end{aligned} \quad (17)$$

which is similar to (6) that is obtained in Liu and Park (2017a).

We should point out that (17) has a smaller estimator than the classical trapezoidal rule stated in Liu and Lu (2015), i.e.

$$\left| \frac{\phi(\nu) + \phi(\omega)}{2} - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \leq \frac{(\omega - \nu)^2}{8} \|\phi''\|_{\infty}.$$

(2) $\hbar = 0$ and $x = \frac{\nu + \omega}{2}$, we have

$$\begin{aligned} & \left| \frac{1}{2} \left[\phi \left(\frac{\nu + \omega}{2} \right) + \frac{\phi(\nu) + \phi(\omega)}{2} \right] - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \\ & \leq \frac{(\omega - \nu)^2}{48} \|\phi''\|_{\infty}, \end{aligned} \quad (18)$$

which is similar to result that is obtained in Dragomir and Sofo (2000).

(3) $\hbar = \frac{1}{2}$ and $x = \nu$, we have

$$\begin{aligned} & \left| \frac{\phi(\nu) + 3\phi(\omega)}{4} - \frac{(\omega - \nu)}{32} (9\phi'(\omega) - \phi'(\nu)) \right. \\ & \left. - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \leq \frac{29(\omega - \nu)^2}{384} \|\phi''\|_{\infty}. \end{aligned} \quad (19)$$

(4) $\hbar = \frac{1}{2}$ and $x = \frac{3\nu + \omega}{4}$, we have

$$\begin{aligned} & \left| \frac{1}{4} \left[\phi(\nu) + \phi \left(\frac{\nu + 3\omega}{4} \right) + 2\phi(\omega) \right] - \frac{(\omega - \nu)}{32} \left[4\phi' \left(\frac{\nu + 3\omega}{4} \right) \right. \right. \\ & \left. \left. + 3\phi'(\omega) - \phi'(\nu) \right] - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \\ & \leq \frac{5(\omega - \nu)^2}{192} \|\phi''\|_{\infty}. \end{aligned} \quad (20)$$

(5) $\hbar = 1$ and $x = \nu$, we have

$$\begin{aligned} & \left| \frac{\phi(\omega)}{4} - \frac{(\omega - \nu)}{4} (2\phi'(\nu) + \phi'(\omega)) - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \\ & \leq \frac{35(\omega - \nu)^2}{384} \|\phi''\|_{\infty}. \end{aligned} \quad (21)$$

(6) $\hbar = 1$ and $x = \frac{\nu + \omega}{2}$, we have

$$\begin{aligned} & \left| \frac{\phi(\nu) + 3\phi(\omega)}{4} - \frac{(\omega - \nu)}{4} \phi'(\omega) - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \\ & \leq \frac{11(\omega - \nu)^2}{192} \|\phi''\|_{\infty}. \end{aligned} \quad (22)$$

Remark 3 *In (19), if we consider $\phi'(\nu) = \phi'(\omega)$ and utilize the three-point midpoint approximation of $\phi' \left(\frac{\nu + 3\omega}{4} \right)$, then we generate the next perturbed inequality of trapezoid type:*

$$\begin{aligned} & \left| \left[\frac{\phi(\nu) + \phi(\omega)}{2} + \frac{\phi \left(\frac{\nu + \omega}{2} \right) + \phi \left(\frac{\nu + 3\omega}{4} \right)}{2} \right] - \frac{1}{\omega - \nu} \int_{\nu}^{\omega} \phi(t) dt \right| \\ & \leq \frac{5(\omega - \nu)^2}{192} \|\phi''\|_{\infty}. \end{aligned} \quad (23)$$

Remark 4 Inequality (23) represents a new perturbed trapezoid type inequality with right hand side has smaller estimator than that of (6).

Remark 5 Inequality (17) reveals the relationship between the Euler-Maclaurin summation formula and the trapezoidal rule as

$$\begin{aligned} \sum_{x=v}^{\omega} \phi(x) &= \int_v^{\omega} \phi(t) dt + \frac{1}{2} [\phi(v) + \phi(b)] + \\ &\quad \sum_{i=2}^k \frac{b_i}{i!} [\phi^{(i-1)}(\omega) - \phi^{(i-1)}(v)] \\ &\quad - \int_v^{\omega} \frac{B_k(\{1-t\})}{k!} \phi^{(k)}(t) dt, \end{aligned} \quad (24)$$

where B_n represent the Bernoulli polynomials, b_n represent some given numbers, $v, \omega \in \mathbb{R}$ such that $\omega - v \in \mathbb{Z}^+$, $k \in \mathbb{Z}^+$, and the symbol $\{\zeta\}$ indicates to the fractional term of ζ in which $\zeta \in \mathbb{R}$ (Milovanović, 2017).

5. APPLICATIONS TO COMPOSITE QUADRATURE RULES

In this following content, we utilize our new result (7) to carry out some novel composite quadrature formulae with much lower error.

Theorem 5 Assume $\varphi_n : v = v_0 < v_1 < v_2 < \dots < v_{n-1} < v_n = \omega$ is a partition of $[v, \omega]$, $\Delta_i = v_{i+1} - v_i$ ($i = 0, 1, \dots, n-1$), $\eta(\Delta) := \max\{\Delta_i : i = 0, 1, \dots, n\}$, $\xi_i \in [v_i, \frac{v_i+v_{i+1}}{2}]$, $\hbar \in [0, 1]$ and

$$\begin{aligned} \Psi(\phi, \varphi_n, \xi) &= \frac{1}{4} \sum_{i=0}^{n-1} \Delta_i [\phi(\xi_i) + \phi(v_i) + \phi(v_{i+1}) \\ &\quad + \phi(v_i + v_{i+1} - \xi_i) + 2\hbar(\phi(v_{i+1}) - \phi(\xi_i))] \\ &\quad - \frac{1}{4} \sum_{i=0}^{n-1} \Delta_i \left[(1-2\hbar) \left(\xi_i - \left(\frac{v_i + v_{i+1}}{2} - \frac{\hbar}{2} \Delta_i \right) \right) \right. \\ &\quad \left. \phi'(\xi_i) - \left(\xi_i - \left(\frac{v_i + v_{i+1}}{2} + \frac{\hbar}{2} \Delta_i \right) \right) \right. \\ &\quad \left. \phi'(v_i + v_{i+1} - \xi_i) + \frac{\Delta_i}{2} \left((\hbar^2 - \hbar) \phi'(v_i) \right. \right. \\ &\quad \left. \left. + (\hbar^2 + \hbar) \phi'(v_{i+1}) \right) \right], \end{aligned} \quad (25)$$

then

$$\int_v^{\omega} \phi(v) dv = \Psi(\phi, \varphi_n, \xi) + \$(\phi, \varphi_n, \xi), \quad (26)$$

where $\$(\phi, \varphi_n, \xi)$ represents the remainder satisfying the following estimate

$$\begin{aligned} \$(\phi, \varphi_n, \xi) &\leq \frac{\|\phi''\|_{\infty}}{2} \left\{ \frac{1}{3} \sum_{i=0}^{n-1} \left[2 \left(\frac{v_i + v_{i+1}}{2} - \xi_i \right)^3 \right. \right. \\ &\quad \left. + \left(\frac{3v_i + v_{i+1}}{4} + \hbar \Delta_i - \xi_i \right)^3 + \left(\frac{3v_i + v_{i+1}}{4} - \xi_i \right)^3 \right] \\ &\quad + \frac{1}{16} \sum_{i=0}^{n-1} \Delta_i^2 \left[(2\hbar - 1)^2 + 1 \right] (\xi_i - (v_i + \hbar \Delta_i)) \\ &\quad \left. \left. + \frac{\Delta_i}{12} (12\hbar^2 + 12\hbar - 2) \right] \right\}. \end{aligned} \quad (27)$$

Proof: By applying (7) on $\xi_i \in [v_i, \frac{v_i+v_{i+1}}{2}]$, we obtain

$$\begin{aligned} &\left| \int_{v_i}^{v_{i+1}} \phi(t) dt - \frac{\Delta_i}{4} \left[\phi(\xi_i) + \phi(v_i) + \phi(v_{i+1}) \right. \right. \\ &\quad \left. \left. + \phi(v_i + v_{i+1} - \xi_i) 2\hbar(\phi(v_{i+1}) - \phi(\xi_i)) \right] \right. \\ &\quad \left. + \frac{\Delta_i}{4} \left[(1-2\hbar) \left(\xi_i - \left(\frac{v_i + v_{i+1}}{2} - \frac{\hbar}{2} \Delta_i \right) \right) \phi'(\xi_i) \right. \right. \\ &\quad \left. \left. - \left(\xi_i - \left(\frac{v_i + v_{i+1}}{2} + \frac{\hbar}{2} \Delta_i \right) \right) \phi'(v_i + v_{i+1} - \xi_i) \right] \right. \\ &\quad \left. + \frac{\Delta_i}{2} \left((\hbar^2 - \hbar) \phi'(v_i) + (\hbar^2 + \hbar) \phi'(v_{i+1}) \right) \right] \right| \leq \\ &\quad \left\{ \frac{1}{3} \left[2 \left(\frac{v_i + v_{i+1}}{2} - \xi_i \right)^3 + \left(\frac{3v_i + v_{i+1}}{4} + \hbar \Delta_i - \xi_i \right)^3 \right. \right. \\ &\quad \left. \left. + \left(\frac{3v_i + v_{i+1}}{4} - \xi_i \right)^3 \right] \right. \\ &\quad \left. + \frac{\Delta_i^2}{16} \left[(2\hbar - 1)^2 + 1 \right] (\xi_i - (v_i + \hbar \Delta_i)) \right. \\ &\quad \left. \left. + \frac{\Delta_i}{12} (12\hbar^2 + 12\hbar - 2) \right] \right\} \frac{\|\phi''\|_{\infty}}{2}. \end{aligned} \quad (28)$$

$\forall i = 0, 1, \dots, n-1$. Consequently, by taking the summation from 0 to $n-1$ over i coupled with using the triangle inequality, then (26) can be obtained.

Corollary 2 Using the same assumptions of Theorem 7 and selecting $\xi_i = v_i$ with $\hbar = \frac{1}{2}$, we have

$$\begin{aligned} \Psi(\phi, \varphi_n, \xi) &= \frac{1}{4} \sum_{i=0}^{n-1} \left([\phi(v_i) + 3\phi(v_{i+1})] - \frac{\Delta_i}{8} (9\phi'(v_{i+1}) \right. \\ &\quad \left. - \phi'(v_i)) \right) \end{aligned} \quad (29)$$

and

$$\$(\phi, \varphi_n) \leq \frac{29 \|\phi''\|_\infty}{384} \sum_{i=0}^{n-1} \Delta_i^3. \quad (30)$$

6. CONCLUSION

Motivated by [Dragomir and Sofo \(2000\)](#) and [Liu and Park \(2017a\)](#), new Ostrowski type integral inequality is obtained for differentiable mappings which their second derivatives belong to L_∞ . Our result reveals a range of estimates along with what it was provided in [Alshanti \(2018\)](#) and [Alshanti \(2019\)](#). We established new perturbed trapezoid like inequalities through utilizing a parameter $\hbar \in [0, 1]$. The new perturbed trapezoid type inequalities are proposed with error bounds smaller than and similar to those reported by previous studies, namely, [Dragomir and Sofo \(2000\)](#) and [Liu and Park \(2017a\)](#), respectively. Certain implementations to composite quadrature rules are carried out as well. Our future work is to obtain some better estimates of other well known quadrature rules such as the Simpson's rules.

7. ACKNOWLEDGMENT

The authors received no direct funding for this research paper.

REFERENCES

Al-Zoubi, H., A. Dababneh, and M. Al-Sabbagh (2019). Ruled Surfaces of Finite II-Type. *WSEAS Transactions on Mathematics*, **18**; 1–5

Albadarneh, R. B., I. Batiha, A. Alomari, and N. Tahat (2021a). Numerical Approach for Approximating the Caputo Fractional-Order Derivative Operator. *AIMS Mathematics*, **6**(11); 12743–12756

Albadarneh, R. B., I. M. Batiha, A. Adwai, N. Tahat, and A. Alomari (2021b). Numerical Approach of Riemann-Liouville Fractional Derivative Operator. *International Journal of Electrical and Computer Engineering*, **11**(6); 5367–5378

Alshanti, W. G. (2018). A Perturbed Version of General Weighted Ostrowski Type Inequality and Applications. *International Journal of Analysis and Applications*, **16**(4); 503–517

Alshanti, W. G. (2019). Inequality of Ostrowski Type for Mappings with Bounded Fourth Order Partial Derivatives. In *Abstract and Applied Analysis*, **2019**; 1–6

Alshanti, W. G. (2021). Riemann-Stieltjes Integrals and Some Ostrowski Type Inequalities. *The Australian Journal of Mathematical Analysis and Applications*, **18**(1); 1–11

Alshanti, W. G., A. Alshanti, A. Zraiqat, and I. H. Jebril (2022). Cubature Formula for Double Integrals Based on Ostrowski Type Inequality. *International Journal of Difference Equations*, **17**(2); 379–387

Alshanti, W. G. and G. V. Milovanovic (2020). Double-Sided Inequalities of Ostrowski's Type and Some Applications. *Journal of Computational Analysis and Applications*, **28**(4); 724–736

Alshanti, W. G. and A. Qayyum (2017). A Note on New Ostrowski Type Inequalities Using a Generalized Kernel. *Bulletin of Mathematical Analysis and Applications*, **9**(1); 74–91

Alshanti, W. G., A. Qayyum, and M. A. Majid (2017). Ostrowski Type Inequalities by Using a Generalized Quadratic Kernel. *Journal of Inequalities and Special Functions*, **8**(4); 111–135

Amjad, J., A. Qayyum, S. Fahad, and M. Arslan (2022). Some New Generalized Ostrowski Type Inequalities with New Error Bounds. *Innovative Journal of Mathematics*, **1**(2); 30–43

Batiha, I. M. (2011). Restriction method for approximating square roots. *International Journal of Open Problems in Computer Science and Mathematics*, **4**(3); 146–151

Batiha, I. M., S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, and M. Albdareen (2022). Modified Three-Point Fractional Formulas with Richardson Extrapolation. *Mathematics*, **10**(19); 3489

Dragomir, S. S. and A. Sofo (2000). An Integral Inequality for Twice Differentiable Mappings and Applications. *Tamkang Journal of Mathematics*, **31**(4); 257–266

Liu, W., X. Gao, and Y. Wen (2016). Approximating the Finite Hilbert Transform Via Some Companions of Ostrowski's Inequalities. *Bulletin of the Malaysian Mathematical Sciences Society*, **39**; 1499–1513

Liu, W. and N. Lu (2015). Approximating the Finite Hilbert Transform Via Simpson Type Inequalities and Applications. *Journal Scientific Bulletin Series A Applied Mathematics and Physics*, **77**(3); 107–122

Liu, W. and J. Park (2017a). A Companion of Ostrowski Like Inequality and Applications to Composite Quadrature Rules. *Journal of Computational Analysis and Applications*, **22**(1); 19–24

Liu, W. and J. Park (2017b). Some Perturbed Versions of the Generalized Trapezoid Inequality for Functions of Bounded Variation. *Journal of Computational Analysis and Applications*, **22**(1); 11–18

Milovanovic, G. (1977). On Some Functional Inequalities. *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.*, **599**; 1–59

Milovanović, G. V. (1975). On Some Integral Inequalities. *Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika*, (498/541); 119–124

Milovanović, G. V. (2017). Summation Formulas of Euler-Maclaurin and Abel-Plana: Old and New Results and Applications. *Progress in Approximation Theory and Applicable Complex Analysis: In Memory of QI Rahman*, **2017**; 429–461

Milovanović, G. V. and J. E. Pečarić (1976). On Generalization of the Inequality of A. Ostrowski and Some Related Applications. *Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika*, (544/576); 155–158

Dordević, R. Ž. and G. V. Milovanović (1975). A Generalization of E. Landau's Theorem. *Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika*, (498/541); 97–106

Ostrowski, A. (1937). Über Die Absolutabweichung Einer Differentiierbaren Funktion Von Ihrem Integralmittelwert. *Commentarii Mathematici Helvetici*, **10**(1); 226–227

Vasić, P. M. and G. V. Milovanović (1976). On an Inequality of Iyengar. *Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika*, (544/576); 18–24