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Abstract

Keywords

In our current research article, based on a general configuration of a 3-step Peano kernel, new versions of integral inequality of
Ostrowski's type are developed for differentiable mappings that have second derivatives belong to L.,. Then we utilized these
versions to generate new perturbed trapezoid like inequalities. These new perturbed trapezoid like inequalities are proposed with
error bounds smaller than and similar to those reported by previous studies. Moreover, some of the obtained perturbed trapezoid like
inequalities reveal the relationship between the Euler-Maclaurin summation and the trapezoidal rule. Finally, certain implementations
to numerical composite quadrature rules are provided for completeness.
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1. INTRODUCTION

Establishing appropriate numerical formulae to introduce an
accurate approximation of certain operators are regarded nec-
essary to solve many mathematical problems (Albadarneh et al.,
2021a,b; Batiha et al., 2022; Batiha, 2011). Definite integrals
of bounded functions over given intervals are sometimes dif-
ficult or even impossible to be evaluated. In such cases, the
function could be complicated or not explicitly defined. There-
fore, depending on varies functional values, the quadrature
rules such as trapezoidal and Simpson’s rules come into play.
The composite trapezoidal rule is known as follows:
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where ¢ : [v, w] > Risboundedand v < {1 < -+ < -1 <
w is an equally spaced partition of [v, w] that generates m
segments each of width 2 = (w —v) /m.

In numerical integration theory, throughout the past few
decades, Ostrowski’s integral inequality (Ostrowski, 1937) and
also inequalities of Ostrowski’s type have been utilized to an-
alyze errors in quadrature rules (Alshanti et al., 2022). Os-
trowski’s inequality can be described in the following manner.

Theorem 1 Assume g : [v, w] — R is a continuous mapping on

[v, w] and g’ is bounded on (v, w), then Vx € [v, w], we get
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Many studies adopted techniques such as examining dif-
ferent abstract spaces or considering distinct Peano kernel to
obtain effective bounds of Ostrowski’s like inequalities as well
as some perturbed well known quadrature rules. Within such
sharp bounds, many of the computational works rely, basically,
on the values of Lebesgue norms of the derivatives associated
with the provided mappings. The idea is to estimate the error
for fairly general functions by relating it to quadrature errors
associated with a restricted class of functions, namely piece-
wise polynomials called Peano kernels. Then these kernels and
the derivatives of the proposed functions can be used by the
means of integration by parts to generate identities. Finally, by
using the functional properties of the abstract space, in which
these derivatives belong to, these identities can be converted
into Ostrowski’s like inequalities. Some of these studies can be
found in (Alshanti and Qayyum, 2017; Alshanti et al., 2017;
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Alshanti, 2018, 2019; Alshanti and Milovanovic, 2020; Al-
shanti, 2021; Amjad et al., 2022; Liu et al., 2016; Dragomir
and Sofo, 2000; Liu and Park, 2017a; Liu and Lu, 2015; Liu
and Park, 2017b; Al-Zoubi et al., 2019). Also, for more rig-
orous related approaches, we refer the reader to (Milovanovic,
2017; Milovanovi¢ and Pecari¢, 1976; Milovanovi¢, 1975;
Milovanovic, 1977; Vasi¢ and Milovanovié¢, 1976; Dordevi¢
and Milovanovic¢, 1975).

2. PREVIOUS RELATED WORKS

The inequality of Ostrowski type has been, exhaustively, stud-
ied in literatures for the cases of differentiable mappings which
their second derivatives belonging to Le. In 2000, Dragomir
and Sofo (2000) demonstrated the next inequality of Ostrowski

type.

Theorem 2 Suppose Q: [v,
an absolutely continuous on [v,

w] — R be a mapping where Q' is
w]and Q" € Lo [v, w]. Then
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Liu and Park (2017a) introduced in the next inequality of
Ostrowski’s type.

Theorem 3 Suppose Q: [v, w] — R is a mapping where Q' is an
absolutely continuous on [v, w] and Q" € Lo [v, w]. Then

l(Q(K)+Q(V+w—K) +Q(v)+Q(w))
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Remark 1 Choosing = Y% in (3) and (4) yields
l Q(v+w)+Q(v)+Q(w) B 1 /Q(s)ds
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Remark 2 For = v in (4), we have the following perturbed in-
equality of trapezoidal type
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The estimator of (6) is smaller than the estimator of the classical
trapezoidal rule.

In this paper, motivated by Dragomir and Sofo (2000) and
Liu and Park (2017a), perturbed trapezoidal type inequalities
with a range of estimates are obtained through considering
arbitrary parameter /i € [0, 1]. New perturbed trapezoid type
inequalities are proposed with similar and smaller errors than
those reported by both Dragomir and Sofo (2000) and Liu
and Park (2017a), respectively.

3. MAIN RESULTS

The primary goal of this part is to establish certain integral
inequalities of Ostrowski type via proposing a generalization
of the 3-step linear Peano kernel (see (8) below). We consider
differentiable mappings that have second derivatives belong to
L to obtain the our results.

Theorem 4 Suppose ¢ : [v, w] — R a given mapping whereby
¢’ is an absolutely continuous over [v, w] and assume that ¢” €

Lo [v, w]. ThenVzx € [v, v+ h“’;"] and h € [0, 1], we have:
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Proof: Herein, we outline the kernel P (z,t) : [v, w] = R by
t— (v +hegY), telv,a],
P(x,t)=9 t— (B2 -h%Y), te(@x,v+w—-za], (8)
t - (w—h% V), te (v+w-r,0],
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Vx € [v v+ h<s "] and & € [0, 1]. Then we have (Alshanti
and Qayyum, Z()l 7):

%V/P(x, g’ (t)dt =
%[(1—2h)g(x)+g(v+w—x)+ﬁ(g(v) ©)
+g(@)] —ﬁj)gwdt.

On choosing

g(x)=($—(vgw w;v

in equality (9), we get
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Hence, from (10) and (11), we can get
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Now, applying Holder inequality yields
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Now, asx € [v, v+ h%], we can obtain
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Therefore, by referring to (13)—(16), we obtain the result (7).

4. SOME NEW PERTURBED TRAPEZOID INEQUAL-
ITIES

In this part, some novel perturbed trapezoid type inequalities
are provided in light of the theoretical aspects discussed in the
previous section.

Corollary 1 Using the same assumptions of Theorem 4 and setting

() h=0and x = v, we get

¢’ (v))

(¢ (w) -

‘¢(v)+¢(w> (- v)
2

w

(17)
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o 197l

v

which is similar to (6) that is obtained in Liu and Park (2017a).

We should point out that (17) has a smaller estimator than the
classical trapezoidal rule stated in Liu and Lu (2015), i.e.

/¢(l)dl
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(2) h=0and x = 5%, we have

1 v+ ¢ (v)+ ¢ (w)
§[¢( 5 ) g ]"

! /¢<z>dt
w -V

(18)
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which is similar to result that is obtained in Dragomir and Sofo
(2000).
(3) h= % and x = v, we have

'¢ 36 _@=1) (07 () g (1)
w 0 (0 v)? (19)
w - 7
R ¢(t)dt' TW lloo -

v

(4) h= % and x = 3":“‘, we have
1 v+3w)\ (w=v) v+ 3w
1o o[22 v )| - 5 l¢( )

+3¢'(w>—¢’<v>l - [s0a

5(0.)—1/)2 ’”
< oo 16" lloo -
(20)
(6) h=1and x = v, we have
2lo) Loz oy (v)+¢(w>)——/¢(t>dt
(21)
35(60 v? o,
(6) A =1andx = %52, we have
p(v)+3¢(w) (w-— )
- ¢ (t)dt
‘ 4 4 / 29)
1l (w-v)?*
TW lloo -

Remark 3 In (19), if we consider ¢’ (v) = ¢’ (w) and utilize the

’ V+Zw

three-point midpoint approximation of ¢ ) then we generate

the next perturbed inequality of trapezoid type.
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Remark 4 Inequality (23) represents a new perturbed trapezoid — where $ (p, @,,, &) represents the remainder satisfying the following
type inequality with right hand side has smaller estimator than that of  estimate

(6).

16" lloo Vi + Vsl 3
Remark 5 Inequality (17) reveals the relationship between the 5(0, 01, 8) < 9 gZ 2 ( 9 h é:")
Euler-Maclaurin summation formula and the trapezoidal rule as i=0

3 3
) o 1 +(w+’mf‘ff) +(%‘fi) ]
Yo = /¢(z>dt+§[¢<v>+¢<b>1+ @7)
= ZAQ[ (@8- D%+ 1) & - (i +18)
k bt i1 i1 i=0
2 [0 @ =6 )]
= +ﬁ(12h2+12h—2)]}
12 ‘
_/w(p(/& (1) dt, (24)

Proof: By applying (7) on &; € [v;, +U’“] we obtain

v

where B, represent the Bernoulli polynomials, b, represent some
given numbers, v, w € R such that w — v € Z*, k € Z*, and the
symbol {{'} indicates to the fractional term of ¢ in which { € R
(Milovanovi, 2017).

(t)dt - %[¢ (&) + ¢ (vi) + ¢ (vir1)

+¢ (Vi + v — &) 20 (¢ (Vin1) — (i))]
5. APPLICATIONS TO COMPOSITE QUADRATURE ¢ A& ¢ (Wint -

RULES A Vi + Uiyl
In this following content, we utilize our new result (7) to carry * 4 (1-2h) (fi B ( 2 - _A )) ¢ (&)
out some novel composite quadrature formulae with much vi+vig h
lower error. (fz (—2 + §Ai)) ¢" (vi +vis1 — &)
Theorem 5 Assume ¢, : v = vy < v] <vg < --- < vn_l < A; 9
v, = wisapartitionof [v, w], A; = viy1—v; 1 =0, 1, -1, +5 (( ) ¢ (vi) + (h + h) ¢’ (Uz+1)) (28)
n(A) = max{A;:i=0,1,---,n}, & € [v;, U’“"”] h € ,
[0, 1] and 1 vl + ul+1 3 (3u; +vip
§ - fz) 4 + hAz - fz
¥ (¢, pu, ) =7 ZA [¢ &)+ (i) + ¢ (vin1) ( P+ Ul )51
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¢(§i)—(§i ( 5t g )) i )l} 2
& (Ui + i) — &) + =L ( ( ) & (u;) \{z =0,1,---,n— 1.. Conseque.ntly, by taking the st.lmmati.on
2 from 0 to n— 1 over i coupled with using the triangle inequality,
9 then (26) can be obtained.
+ (124 n) ¢ (i) )
Corollary 2 Using the same assumptions of Theorem 7 and selecting
(25) & =viwithh= %, we have
then ln—l
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and

2916”1 X 15
384 ZA (80)

6. CONCLUSION

Motivated by Dragomir and Sofo (2000) and Liu and Park
(2017a), new Ostrowski type integral inequality is obtained for
differentiable mappings which their second derivatives belong
to L. Our result reveals a range of estimates along with what
it was provided in Alshanti (2018) and Alshanti (2019). We
established new perturbed trapezoid like inequalities through
utilizing a parameter i € [0, 1]. The new perturbed trape-
zoid type inequalities are proposed with error bounds smaller
than and similar to those reported by previous studies, namely,
Dragomir and Sofo (2000) and Liu and Park (2017a), respec-
tively. Certain implementations to composite quadrature rules
are carried out as well. Our future work is to obtain some bet-
ter estimates of other well known quadrature rules such as the
Simpson’s rules.
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