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1. INTRODUCTION

A major aim in exploring probability distribution is to ob-
tain new distribution that gives higher efficiency to data be-
ing modelled. The objective is to obtain a new distribution
that gives more flexibility and general applicability to real life
observations. To this end, several techniques on improving
classical distributions pervade literature. Among several meth-
ods of compounding classical probability distributions are: the
quadratic transmutation map (Shaw and Buckley, 2007); the
beta extended G distributions (Cordeiro et al., 2012); the beta
exponential G distributions (Alzaatreh et al., 2013); the expo-
nentiated generalized G distributions (Cordeiro et al., 2013);
the Weibull-G family (Bourguignon et al., 2014); the trans-
muted exponentiated generalized-G (Yousof et al., 2015); the
alpha-power Transformation (Mahdavi and Kundu, 2017); and
the cubic rank transmutations (AL Kadim, 2018; Aslam et al.,
2018; Granzotto et al., 2017; Rahman et al., 2019).

In count observation paradigm, the Poisson distribution
has received wide acceptance largely due to its simple form
and ease of parameter interpretation. The distribution how-
ever assumes equality for mean and variance which is rarely
the case when given real count observations. To improve this,
several methods have been proposed to modify the Poisson
distribution. The aim is usually to obtain a more flexible distri-

bution that can model dispersed observation. Popular among
these is the mixed Poisson distribution(Greenwood and Yule,
1920) . The mixed Poisson always have higher variance than
mean (Karlis and Xekalaki, 2005) , hence, would be efficient to
model over-dispersed observations which characterize several
count distributions, especially claims frequency in actuary sci-
ence (Adcock et al., 2015; Adetunji and Sabri, 2021; Omari
et al., 2018). The process involves assuming a distribution (the
mixing distribution) with positive supports for the parameter
of the Poisson distribution. Conditional distribution of the
joint distribution of the Poisson distribution and the mixing
distribution is then obtained. Different forms of the mixed
Poisson distribution have been proposed with evidences of pro-
viding more efficiency in modelling dispersed count data (Bhati
et al., 2015; Karlis and Xekalaki, 2005; Zakerzadeh and Dolati,
2009).

This research uses the Quadratic Transmutation (QT) map
of Shaw and Buckley (2007) on the weighted exponential dis-
tribution Gupta and Kundu (2009) to obtain a new mixing
probability distribution. The new distribution is then assumed
for the parameter of the Poisson distribution. This is then used
to obtain a new three-parameter mixed Poisson distribution.
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2. EXPERIMENTAL SECTION

2.1 Methodology
2.1.1 Weighted Exponential Distribution
Using the process proposed by Azzalini (1985) , the Weighted
Exponential Distribution (WED) was proposed by Gupta and
Kundu (2009) . The shape of the distribution is similar to other
common two-parameter lifetime distributions like the Weibull
and Gamma distributions. The distribution has been reported
to perform favourably well like other lifetime distributions (Al-
tun, 2019; Gupta and Kundu, 2009; Shakhatreh, 2012). If a
continuous random variable Y assumes the WED, its distribu-
tion function is defined in Equation (1) as:

G (x) = 1 − 1
𝜆
e−𝜃 (𝜆 + 1 − e−𝜆 𝜃y) (1)

2.1.2 Quadratic Transmutation Map
The Quadratic Transmutation (QT) map was proposed by
Shaw and Buckley (2007) . If a baseline distribution has a
distribution function denoted with G(y), the equivalent QT is
obtained using Equation (2):

F (y) = (1 + 𝛼)G (y) − 𝛼 (G (y))2; y ∈ ℝ|𝛼 | ≤ 1 (2)

2.1.3 Quadratic Transmuted Weighted Exponential Distri-
bution

Given the WED as in (1), the Quadratic Transmuted Weighted
Exponential Distribution (QTWED) is obtained by inserting
(1) into (2). Hence, the distribution function for a random
variable Y that assumes the QTWED is presented in Equation
(3) while its PDF is presented in Equation (4) as:

F (y) = 1 − 𝛼 (1 + 𝛼)2

𝜆 2
e−𝜃y − 𝛼

𝜆 2
e−2(1+𝜆 )𝜃y−

(𝛼 − 1)
𝜆

e−(1+𝜆 )𝜃y + 2𝛼 (1 + 𝜆 )
𝜆 2

e−(2+𝜆 )𝜃y (3)

F (y) = 2𝜃 (1 + 𝜆 )
𝜆 2

(
𝜆 (𝛼 − 1)

2
e−(1+𝜆 )𝜃y − 𝜆 (𝛼 − 1)

2
e−𝜃y

+𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y − 𝛼 (2 + 𝜆 )e−(2+𝜆 )𝜃y
)

(4)

The survival and hazard functions are respectively given in
Equations (5) and (6) as:

S (y) =
(
𝜆 (𝛼 − 1)e−(1+𝜆 )𝜃y2𝛼 (1 + 𝜆 )e−(2+𝜆 )𝜃y+

𝜆 2

𝛼e−2(1+𝜆 )𝜃y + (1 + 𝜆 ) (𝛼 (1 + 𝜆 )e−𝜃y − 𝜆 (𝛼 − 1)e−𝜃y
)

𝜆 2

(5)

Figure 1. Shapes of the PDF of the QTWED

Figure 2. Shapes of the HRF of the QTWED

h(y) =
2𝜃 (1 + 𝜆 )

(
𝜆 (𝛼−1)

2 e−(1+𝜆 )𝜃y − 𝜆
(𝛼−1)

2 e−𝜃y + 𝛼(
𝜆 (𝛼 − 1)e−(1+𝜆 )𝜃y − 2𝛼 (1 + 𝜆 )e−(2+𝜆 )𝜃y+)

e−2(1+𝜆 )𝜃y + 𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y

𝛼e−2(1+𝜆 )𝜃y + (1 + 𝜆 ) (𝛼 (1 + 𝜆 )e−2𝜃y

−𝛼 (2 + 𝜆 )e (2+𝜆 )𝜃y
)

−𝜆 (𝛼 − 1)e−𝜃y)
) (6)

Shapes of the PDF of the QTWED for different parameters
combinations as shown in Figure 1 are positively skewed and
unimodal. Figure 2 shows that the hazard rate function of the
QTWED has an inverted J-shape.

2.1.4 Moment and Moment Generating Function
Proposition 1: If a random variable Y has a QTWED, the rth

moment is given in Equation (7) as:

E(Y r ) = (1 + 𝜆 )r!
𝜆 2𝜃 r

(
𝜆 (𝛼 − 1)
(1 + 𝜆 )r+1

− 𝜆 (𝛼 − 1)+

𝛼

22 (1 + 𝜆 )r+1
+ 𝛼 (1 + 𝜆 )

2r
− 2𝛼

(2 + 𝜆 )r

)
(7)

Proof:

E(Y r ) =
∫ ∞

0
yr f (y)dy
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=
2𝜃 (1 + 𝜆 )

𝜆 2

∫ ∞

0
yr

(
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2
e−(1+𝜆 )𝜃y−

𝜆 (𝛼 − 1)
2

e𝜃y + 𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y − 𝛼

(2 + 𝜆 )e−(2+𝜆 )𝜃y
))

=
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2

∫ ∞

0
yr e−1(1+𝜆 )𝜃ydy−

𝜆 (𝛼 − 1)
2

∫ ∞

0
yr e−𝜃ydy + 𝛼

∫ ∞

0
yr e−2(1+𝜆 )𝜃ydy+

𝛼 (1 + 𝜆 )
∫ ∞

0
yr e−2𝜃ydy − 𝛼 (2 + 𝜆 )

∫ ∞

0
yr e−(2+𝜆 )𝜃ydy

)

=
2𝜃 (1 + 𝜆 )r!

𝜆 2

(
𝜆 (𝛼 − 1)

2(1 + 𝜆 )r+1𝜃 r+1
− 𝜆 (𝛼 − 1)

2𝜃 r+1
+

𝛼

2r+1 (1 + 𝜆 )r+1𝜃 r+1
+ 𝛼 (1 + 𝜆 )

2r+1𝜃 r+1
− 𝛼 (2 + 𝜆 )

(2 + 𝜆 )r+1𝜃 r+1

)

=
2𝜃 (1 + 𝜆 )r!

𝜆 2𝜃 r

(
𝜆 (𝛼 − 1)

2(1 + 𝜆 )r+1
− 𝜆 (𝛼 − 1)

2
+

𝛼

2r+1 (1 + 𝜆 )r+1
+ 𝛼 (1 + 𝜆 )

2r+1
− 𝛼

(2 + 𝜆 )r+1

)

=
𝜃 (1 + 𝜆 )r!

𝜆 2𝜃 r

(
𝜆 (𝛼 − 1)

2(1 + 𝜆 )r+1
− 𝜆 (𝛼 − 1)+

𝛼

2r (1 + 𝜆 )r+1
+ 𝛼 (1 + 𝜆 )

2r
− 2𝛼

(2 + 𝜆 )r+1

)
Proposition 2: If a random variable Y has a QTWED, the

MGF is obtained in Equation (8) as:

E(ety) = 2𝜃 (1 + 𝜆 )
𝜆 2

(
𝜆 (𝛼 − 1)

2(𝜃 + 𝜆 𝜃 − t) −
𝜆 (𝛼 − 1)
2(𝜃 − t)

+ 𝛼

(2𝜃 + 2𝜆 𝜃 − t) +
𝛼 (1 + 𝜆 )
(2𝜃 − t) − 𝛼 (2 + 𝜆 )

(2𝜃 + 𝜆 𝜃 − t)

)
(8)

Proof:

E(ety) =
∫ ∞

0
ety f (y)dy

=
2𝜃 (1 + 𝜆 )

𝜆 2

∫ ∞

0
ety

(
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2
e−(1+𝜆 )𝜃y

−𝜆 (𝛼 − 1)
2

e𝜃y + 𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y

−𝛼 (2 + 𝜆 )e−(2+𝜆 )𝜃y
))
dy

=
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2

∫ ∞

0
e−(𝜃+𝜆 𝜃−t)ydy − 𝜆 (𝛼 − 1)

2∫ ∞

0
e−(𝜃−t)ydy + 𝛼

∫ ∞

0
e−(2𝜃+2𝜆 𝜃−t)ydy + 𝛼 (1 + 𝜆 )

∫ ∞

0

e−(2𝜃−t)ydy − 𝛼 (2 + 𝜆 )
∫ ∞

0
e−(2𝜃+𝜆 𝜃−t)ydy

)

=
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2(𝜃 + 𝜆 𝜃 − t) −
𝜆 (𝛼 − 1)
2(𝜃 − t) +

𝛼

2𝜃 + 2𝜆 𝜃 − t +
𝛼 (1 + 𝜆 )
(2𝜃 − t) − 𝛼 (2 + 𝜆 )

(2𝜃 + 𝜆 𝜃 − t)

)
Hence, the mean and variance of QTWED are respectively

given in Equations (9) and (10) as:

E(Y ) = (2 − 𝛼)𝜆 2 + (8 − 3𝛼)𝜆 + 8 − 3𝛼
2𝜃 (1 + 𝜆 ) (2 + 𝜆 ) (9)

V ar (Y ) = 32 − 12𝛼 − 9𝛼2 + (64 − 24𝛼 − 18𝛼2)𝜆+
2𝜃 (1 + 𝜆 ) (2 + 𝜆 )2

V ar (Y ) = (56 − 24𝛼 − 15𝛼2)𝜆 2 + (24 − 12𝛼 − 6𝛼2)
2𝜃 (1 + 𝜆 ) (2 + 𝜆 )2

V ar (Y ) = 𝜆 3 + (4 − 2𝛼 − 𝛼2)𝜆 4

2𝜃 (1 + 𝜆 ) (2 + 𝜆 )2
(10)

2.2 Mixed Poisson QTWED
Proposition 3: If random variable X has a Poisson (Y) distribu-
tion, and Y QTWED(𝜃 ,𝜆 ,𝛼), the PMF of a discrete random
variable X with the mixed Poisson-QTWED is given in Equa-
tion (11) as:

t(x) = 𝜃 (1 + 𝜆 )
𝜆 2

(
𝜆 (𝛼 − 1)

(1 + 𝜃 + 𝜆 𝜃)x+1
− 𝜆 (𝛼 − 1)

(1 + 𝜃)x+1
+

2𝛼
(1 + 2𝜃 + 2𝜆 𝜃)x+1

+ 2𝛼 (1 + 𝜆 )
(1 + 2𝜃)x+1

− 2𝛼 (2 + 𝜆 )
(1 + 2𝜃𝜃𝜆 )x+1

)
(11)

Proof

t(x) =
∫ ∞

0
t(x |y) × f (y)dy

t(x) =
∫ ∞

0

yxe−y

x!

(
2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

2
e−(1+𝜆 )𝜃y

−𝜆 (𝛼 − 1)
2

e𝜃y + 𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y

−𝛼 (2 + 𝜆 )e−(2+𝜆 )𝜃y
))
dy

© 2023 The Authors. Page 237 of 244



Adetunji and Sabri Science and Technology Indonesia, 8 (2023) 235-244

=
2𝜃 (1 + 𝜆 )

𝜆 2x!

∫ ∞

0

(
𝜆 (𝛼 − 1)

2
yxe−(1+𝜃+𝜆 𝜃 )y − 𝜆 (𝛼 − 1)

2

yxe−(1+𝜃 )y + 𝛼yxe−(1+2𝜃+2𝜆 𝜃 )y + 𝛼 (1 + 𝜆 )

yxe−(1+2𝜃 )y − 𝛼 (2 + 𝜆 )yxe−(1+2𝜃+𝜆 𝜃 )y
)
dy

=
2𝜃 (1 + 𝜆 )

𝜆 2x!

(
𝜆 (𝛼 − 1)x!

2(1 + 𝜃 + 𝜆 𝜃)x+1
− 𝜆 (𝛼 − 1)x!

2(1 + 𝜃)x+1
+

𝛼x!
(1 + 2𝜃 + 2𝜆 𝜃)x+1

+ 𝛼 (1 + 𝜆 )x!
(1 + 2𝜃)x+1

− 𝛼 (2 + 𝜆 )x!
(1 + 2𝜃 + 𝜆 𝜃)x+1

)

=
𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

(1 + 𝜃 + 𝜆 𝜃)x+1
− 𝜆 (𝛼 − 1)

(1 + 𝜃)x+1
+

2𝛼
(1 + 2𝜃 + 2𝜆 𝜃)x+1

+ 2𝛼 (1 + 𝜆 )
(1 + 2𝜃)x+1

− 2𝛼 (2 + 𝜆 )
(1 + 2𝜃 + 𝜆 𝜃)x+1

)
Special Cases:

1. Equation (11) becomes the mixed Poisson Weighted
Exponential Distribution (Zamani et al., 2014) when the
shape parameter 𝛼=0 with the PMF given in Equation
(12) as:

t(x) = 𝜃 (1 + 𝜆 )
𝜆

(
1

(1 + 𝜃)x+1
− 1

(1 + 𝜃 + 𝜆 𝜃)x+1

)
(12)

2. When 𝜆=1, the PMF in (11) becomes a new two-parameter
mixed Poisson distribution (N2-PMPD) with PMF given
in Equation (13) as:

t(x) = 2𝜃
(

(𝛼 − 1)
(1 + 2𝜃)x+1

− 𝛼 − 1
(1 + 𝜃)x+1

+ 2𝛼
(1 + 4𝜃)x+1

+ 4𝛼
(1 + 2𝜃)x+1

− 6𝛼
(1 + 3𝜃)x+1

)
(13)

3. When 𝜆=1 and 𝛼=0, the PMF in (11) becomes a new
one-parameter mixed Poisson distribution (N1-PMPD)
with PMF given in Equation (14) as:

t(x) = 2𝜃
(

1
(1 + 𝜃)x+1

− 1
(1 + 2𝜃)x+1

)
(14)

Different shapes of the PMF of the mixed Poisson QTWED
are shown for different values of the parameters 𝜃 , 𝜆 , and a in
Figure 3. The Figure shows that the distribution can effectively
model unimodal positively skewed observations with many
zeros, imitating shapes and characteristics of the QTWED. The
shapes also resembles those obtained for the mixing distribution
(QTWED) in Figure 1.

Figure 3. Shapes of the PMF of the Mixed Poisson QTWED

2.2.1 The CDF of the mixed Poisson QTWED
Proposition 4: If a discrete random variable X has the mixed
Poisson QTWED, the CDF is obtained in Equation (15) as:

T (x) = 1 −
(

𝛼 − 1
𝜆 (1 + 𝜃 + 𝜆 𝜃)x+1

− (𝛼 − 1) (1 + 𝜆 )
𝜆 (1 + 𝜃)x+1

+

𝛼

𝜆 2 (1 + 2𝜃 + 2𝜆 𝜃)x+1
+ 𝛼 (1 + 𝜆 )2

𝜆 2 (1 + 2𝜃)x+1

− 2𝛼 (1 + 𝜆 )
𝜆 2 (1 + 2𝜃 + 𝜆 𝜃)x+1

)
(15)

Proof

T (x) =P (X ≤ x)
= 1 − P (X > x)

= 1 −
∞∑︁

k=x+1

t(k)

= 1 −
∞∑︁

k=x+1

(
𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

(1 + 𝜃 + 𝜆 𝜃)k+1
− 𝜆 (𝛼 − 1)

(1 + 𝜃)k+1
+

2𝛼
(1 + 2𝜃 + 2𝜆 𝜃)k+1

+ 2𝛼 (1 + 𝜆 )
(1 + 2𝜃)k+1

− 2𝛼 (2 + 𝜆 )
(1 + 2𝜃 + 𝜆 𝜃)k+1

))

= 1 −
(
𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

𝜃 (1 + 𝜆 ) (1 + 𝜃 + 𝜆 𝜃)x+1
−

𝜆 (𝛼 − 1)
𝜃 (1 + 𝜃)x+1

+ 2𝛼
2𝜃 (1 + 𝜆 ) (1 + 2𝜃 + 2𝜆 𝜃)x+1

+ 2𝛼 (1 + 𝜆 )
2𝜃 (1 + 2𝜃)x+1

− 2𝛼 (2 + 𝜆 )
𝜃 (2 + 𝜆 ) (1 + 2𝜃 + 𝜆 𝜃)x+1

))

= 1 −
(

(𝛼 − 1)
𝜆 (1 + 𝜃 + 𝜆 𝜃)x+1

− (𝛼 − 1) (1 + 𝜆 )
𝜆 (1 + 𝜃)x+1

+ 𝛼

𝜆 2 (1 + 2𝜃 + 2𝜆 𝜃)x+1
+ 𝛼 (1 + 𝜆 )2

𝜆 2 (1 + 2𝜃)x+1

− 2𝛼 (1 + 𝜆 )
𝜆 2 (1 + 2𝜃 + 𝜆 𝜃)x+1

)
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2.2.2 Reliability Measures of the mixed Poisson QTWED
The Survival function of the mixed Poisson QTWED is given
in Equation (16) as:

S (x) = (𝛼 − 1)
𝜆 (1 + 𝜃 + 𝜆 𝜃)x+1

− (𝛼 − 1) (1 + 𝜆 )
𝜆 (1 + 𝜃)x+1

+ 𝛼

𝜆 2 (1 + 2𝜃 + 2𝜆 𝜃)x+1
+ 𝛼 (1 + 𝜆 )2

𝜆 2 (1 + 2𝜃)x+1

− 2𝛼 (1 + 𝜆 )
𝜆 2 (1 + 2𝜃 + 𝜆 𝜃)x+1

(16)

The hazard rate function is given in Equation (17) as:

h(x) =
𝜃 (1+𝜆 )

𝜆2

(
𝜆 (𝛼−1)

(1+𝜃+𝜆 𝜃 )x+1 − 𝜆 (𝛼−1)
(1+𝜃 )x+1 + 2𝛼

(1+2𝜃+2𝜆 𝜃 )x+1 +
(𝛼−1)

𝜆 (1+𝜃+𝜆 𝜃 )x+1 − (𝛼−1) (1+𝜆 )
𝜆 (1+𝜃 )x+1 + 𝛼

𝜆2 (1+2𝜃+2𝜆 𝜃 )x+1 +

2𝛼 (1+𝜆 )
(1+2𝜃 )x+1 − 2𝛼 (2+𝜆 )

(1+2𝜃+𝜆 𝜃 )x+1

)
𝛼 (1+𝜆 )2

𝜆2 (1+2𝜃 )x+1 − 2𝛼 (1+𝜆 )
𝜆2 (1+2𝜃+𝜆 𝜃 )x+1

(17)

2.2.3 Probability Generating Function of the mixed Poisson
QTWED

The Probability Generating Function (PGF) of a random vari-
able X with the mixed Poisson QTWED is obtained in Equa-
tion (18) as:

Px (s) =
∫ ∞

0
ey (s−1) f (y)dy

=

∫ ∞

0
ey (s−1) 2𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆
𝛼 − 1

2
e−(1+𝜆 )𝜃y−

𝜆 (𝛼 − 1)
2

e−𝜃y + 𝛼e−2(1+𝜆 )𝜃y + 𝛼 (1 + 𝜆 )e−2𝜃y−

𝛼 (2 + 𝜆 )e−(2+𝜆 )𝜃y
)
dy

=
2𝜃 (1 + 𝜆 )

𝜆 2

∫ ∞

0

(
𝜆
𝛼 − 1

2
e−(1+𝜃+𝜆 𝜃−s)y − 𝜆 (𝛼 − 1)

2

e−(1+𝜃−s)y + 𝛼e−(1+2𝜃+2𝜆 𝜃−s)y + 𝛼 (1 + 𝜆 )e−(1+2𝜃−s)y−

𝛼 (2 + 𝜆 )e−(1+2𝜃+𝜆 𝜃−s)y
)
dy

Px (s) =
𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

(1 + 𝜃 + 𝜆 𝜃 − s) −
𝜆 (𝛼 − 1)
(1 + 𝜃 − s) +

2𝛼
(1 + 2𝜃 + 2𝜆 𝜃) +

2𝛼 (1 + 𝜆 )
(1 + 2𝜃 − s) −

2𝛼 (2 + 𝜆 )
(1 + 2𝜃 + 𝜆 𝜃 − s)

)
(18)

2.2.4 Moment Generating Function of the mixed Poisson
QTWED

The MGF is obtained as by replacing s in (18) with et. Hence,
the MGF is given in Equation (19) as:

Mx (t) =
𝜃 (1 + 𝜆 )

𝜆 2

(
𝜆 (𝛼 − 1)

(1 + 𝜃 + 𝜆 𝜃 − et) −
𝜆 (𝛼 − 1)
(1 + 𝜃 − et) +

2𝛼
(1 + 2𝜃 + 2𝜆 𝜃 − et) +

2𝛼 (1 + 𝜆 )
(1 + 2𝜃 − et) −

2𝛼 (2 + 𝜆 )
(1 + 2𝜃 + 𝜆 𝜃 − et)

)
(19)

Using the relationship E(X!) = d
!MX (t)
dt! |t=0 for i=1, 2, ....

The first four central moments for the distribution respectively
denoted by E(X), E(X2), E(X3), and E(X4) are obtained in
Equations (20)–(23) as:

E(X) = (2 − 𝛼)𝜆 2 + (8 − 3𝛼)𝜆 + 8 − 3𝛼
2𝜃 (1 + 𝜆 ) (2 + 𝜆 ) (20)

E(X2) = 1
2𝜃2 (2 + 𝜆 )2 (1 + 𝜆 )2

(4 − 3𝛼 + (2 − 𝛼)𝜃)

𝜆 4 + (28 − 20𝛼 + (14 − 6𝛼)𝜃)𝜆 3 + (76 − 50𝛼+
(36 − 14𝛼)𝜃)𝜆 + (96 − 60𝛼 + (40 − 15𝛼)𝜃)𝜆+
(48 − 30𝛼 + (16 − 6𝛼)𝜃) (21)

E(X3) = 𝜃 (1 + 𝜆 )
𝜆 2

(
6(𝛼 − 1)
(𝜆 𝜃 + 𝜃)4

+ 6𝜆 (𝛼 − 1)
(𝜆 𝜃 + 𝜃)3

+

𝜆 (𝛼 − 1)
(𝜆 𝜃 + 𝜃)2

− 6𝜆 (𝛼 − 1)
(

1
𝜃4

+ 1
𝜃3

+ 1
6𝜃2

)
+ 12𝛼
(2𝜆 𝜃 + 2𝜃)4

+ 12𝛼
(2𝜆 𝜃 + 2𝜃)3

+ 2𝛼
(2𝜆 𝜃 + 2𝜃)2

+

3𝛼 (1 + 𝜆 )
(

1
4𝜃4

+ 1
2𝜃3

+ 1
6𝜃2

)
− 12𝛼 (2 + 𝜆 )

(𝜆 𝜃 + 2𝜃)4
−

12𝛼 (2 + 𝜆 )
(𝜆 𝜃 + 2𝜃)3

− 12𝛼 (2 + 𝜆 )
(𝜆 𝜃 + 2𝜃)4

)
(22)
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E(X4) = 𝜃 (1 + 𝜆 )
𝜆 2

(
𝜆 (𝛼 − 1)

[
24

(𝜆 𝜃 + 𝜃)5
− 24

𝜃5
+

1
(𝛼𝜃 + 𝜃)2

− 1
𝜃2

+ 14
(𝛼𝜃 + 𝜃)3

− 14
𝜃3

− 36
𝜃4

+

36
(𝜆 𝜃 + 𝜃)4

]
+ 𝛼 (1 + 𝜆 )

[
3

2𝜃5
+ 1

2𝜃2
+ 7

2𝜃3
+

9
2𝜃4

]
− 𝛼 (2 + 𝜆 )

[
48

(𝜆 𝜃 + 2𝜃)5
+ 72
(𝜆 𝜃 + 2𝜃)4

+

28
(𝜆 𝜃 + 2𝜃)3

+ 2
(𝜆 𝜃 + 2𝜃)2

]
+ 𝛼

(2𝜆 𝜃 + 2𝜃)2[
2 + 28

(2𝜆 𝜃 + 2𝜃) +
72

(2𝜆 𝜃 + 2𝜃)2
+ 48
(2𝜆 𝜃 + 2𝜃)3

] )
(23)

2.2.5 Measure of Skewness and Kurtosis
Given the first four moments as derived in Equation (20) – (23),
expressions for both skewness and kurtosis are cumbersome
but can be respectively obtained using:

Sk (N ) = E(N3) − 3E(N2)E(N ) + 2(E(N ))3

(V ar (N )) 3
2

Kurt(N ) = E(N4) − 4E(N3)E(N ) + 6E(N2) (E(N ))2

(V ar (N ))2

−3(E(N ))4

(V ar (N ))2

The Index of Dispersion (DI) which assesses the degree of
dispersion in observations for the distribution is defined as:

DI =
V ar (N )
E(N )

Tables 1–3 show simulated values for different parameters
combinations for the Skewness, Kurtosis, and Dispersion Index
of the mixed Poisson QTWED.

Remarks:
1. For fixed 𝛼 and 𝜆 , both skewness and kurtosis increase

while the dispersion index reduces as 𝜃 increases.
2. For fixed 𝛼 and 𝜃 , skewness and kurtosis increase as 𝜆

increases. The dispersion index mostly peaked at 𝜆=7.5.
3. For fixed 𝜆 and 𝜃 , both skewness and kurtosis increases

while the dispersion index decreases as 𝛼 increases.

2.2.6 MaximumLikelihood Estimation for themixed Poisson-
QTWED

Assuming xi ,(i=1,2,. . . k) are random sample of size k from
the mixed Poisson-QTWED with (𝜃 ,𝜆 ,𝛼) as defined in the

Equation (11), the log-likelihood function for the distribution
is obtained in Equation (24) as:

l =
k∑︁
i=1

log
(
𝜃 (1 + 𝛼)

𝛼2

(
𝛼 (p − 1)

(1 + 𝜃 + 𝛼𝜃)ni+1
− 𝛼 (p − 1)

(1 + 𝜃)ni+1

+ 2p
(1 + 2𝜃 + 2𝜃𝛼)ni+1

+ 2p(1 + 𝛼)
(1 + 2𝜃)ni+1

−

2p(2 + 𝛼)
(1 + 2𝜃 + 𝜃𝛼)ni+1

))
(24)

The maximum likelihood estimators for (𝜃 ,𝜆 ,𝛼) denoted
with (𝜃 , 𝜆 , 𝛼̄) are of the non-linear equations dl

d𝜃 =0, dl
d𝜆 =0, and

dl
d𝛼 =0. Due to the complex form of obtaining the necessary
differential equation, we utilize the maxLik function from the
R language R Core Team and Team (2021) to obtain the set
of numerical solutions for the equation.

2.3 Applications
This section considers some non-life insurance datasets to as-
sess proposed distribution along with similar count distribu-
tions. These data represent frequency of claims in Sweden,
Australia, Belgium, and Turkey. The data had been used to
assess new propositions by different authors (R Core Team and
Team, 2021; Denuit, 1997; Meytrianti et al., 2019; Ohlsson
and Johansson, 2010; Omari et al., 2018; Sarul and Sahin,
2015; Zamani et al., 2014). All the data are dispersed with
positive skewness as shown in Table 4.

2.4 Competing Distributions
The performance of the new distribution is assessed on the four
datasets using the following discrete distributions with PMF as
presented in Table 5.

1. Poisson distribution:
2. Zero Inflated Poisson (ZIP) distribution
3. Negative Binomial (NB) distribution
4. Zero Inflated Negative Binomial (ZINB) distribution
5. Mixed Poisson Weighted Exponential Distribution (PW

ED)
6. A New 2-Parameter Mixed Poisson distribution (N2-

MPD) when 𝜆=1, and
7. A New 1-Parameter Mixed Poisson distribution (N1-

MPD) when 𝜆=1 and 𝛼=0.

3. RESULTS AND DISCUSSION

Tables 6–9 show results obtained for applying the new distri-
bution and the competing distributions to the four datasets.

Table 6 shows that the new proposition (Poisson-QTWED)
provides the best fit for the first dataset with the least chi-square
value (0.01) and the least -2LL (7681.24).

The mixed Poisson-QTWED also gives the best fit for the
second dataset. The new 2-parameter Mixed Poisson Distri-
bution (N2-MPD) also gives better fit to the dataset than the
2-parameter Zero Inflated Poisson (ZIP) distribution while
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Table 1. Skewness for Selected Parameter for Mixed Poisson-QTWED

𝜆=0.5 𝜆=2.5 𝜆=7.5
𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10

𝛼=-0.9 1.2447 1.4155 2.3405 1.4878 1.6119 2.6395 1.5761 1.7402 2.8164
𝛼=-0.5 1.2940 1.5400 2.5127 1.5644 1.7552 2.8401 1.6793 1.9040 3.0450
𝛼=0.0 1.4878 1.7165 2.7582 1.7907 1.9592 3.1335 1.9415 2.1440 3.3876
𝛼=0.5 1.7572 1.8836 3.0385 2.1166 2.1586 3.4822 2.3325 2.3963 3.8115
𝛼=0.9 1.6743 1.8932 3.2712 2.0499 2.1746 3.7891 2.3511 2.4469 4.2045

Table 2. Kurtosis for Selected Parameter for Mixed Poisson-QWTED

𝜆=0.5 𝜆=2.5 𝜆=7.5
𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10

𝛼=-0.9 5.5459 5.7386 9.1477 6.6016 6.5982 10.8408 6.9290 7.1855 11.9822
𝛼=-0.5 5.6561 6.2182 10.1424 6.8924 7.2461 12.1408 7.3562 7.9911 13.5710
𝛼=0.0 6.4070 7.0335 11.6598 8.0150 8.3332 14.1776 8.7421 9.3815 16.1459
𝛼=0.5 8.0091 7.9546 13.4600 10.3579 9.5862 16.7126 11.6713 11.1257 19.5399
𝛼=0.9 8.1871 7.8407 14.7702 11.0005 9.4384 18.7126 13.1587 11.2319 22.4531

Table 3. Dispersion Index for Selected Parameter for Mixed Poisson-QWTED

𝜆=0.5 𝜆=2.5 𝜆=7.5
𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10 𝜃=0.1 𝜃=2.0 𝜃=10

𝛼=-0.9 8.2677 1.3634 1.0727 8.3395 1.3670 1.0734 8.9617 1.3981 1.0796
𝛼=-0.5 9.1947 1.4097 1.0819 9.0992 1.4050 1.0810 9.7376 1.4369 1.0874
𝛼=0.0 9.6667 1.4333 1.0867 9.4127 1.4206 1.0841 10.0712 1.4536 1.0907
𝛼=0.5 8.8745 1.3937 1.0787 8.5034 1.3752 1.0750 9.1182 1.4059 1.0812
𝛼=0.9 6.5946 1.2797 1.0559 6.0835 1.2542 1.0508 6.4380 1.2719 1.0544

Table 4. Data Summary

Dataset Percentage of 0 Mean Variance Dispersion Index Skewness Kurtosis

Dataset 1 98.96 0.011 0.012 1.09 10.46 118.26
Dataset 2 93.19 0.073 0.077 1.05 4.07 18.50
Dataset 3 90.33 0.106 0.115 1.08 3.52 14.59
Dataset 5 79.01 0.265 0.334 1.26 7.71 2.56

Table 5. PMF of the Competing Distributions

Distribution PMF

Poisson e𝜃 𝜃 x
x!

ZIP { 𝛼+(1-𝛼)e−𝜃 , x=0 (1-𝛼) e
−𝜃 𝜃 x

den , x=1,2,3,...
NB (x+𝜆−1)

x
𝜃

1+𝜃
x 1

1+𝜃
𝜆

ZINB { 𝛼 + (1-𝛼) 1
1+𝜃

𝜆 , x= 0 (1-𝛼) [ x+𝜆−1
x

𝜃
1+𝜃

x 1
1+𝜃

𝜆 ] x=1,2,3..
PWED 𝜃 (1+𝜆 )

𝜆
1

(1+𝜃 )x+1 - 1
(1+𝜃+𝜆 𝜃 )x+1

N2-MPD 2𝜃 (𝛼−1)
1+2𝜃 - (𝛼−1)

1+𝜃 x+1 + 2𝛼
4+𝜃 x+1 + 4𝛼

2+𝜃 x+1 - 6𝛼
3+𝜃 x+1

N1-MPD 2𝜃 1𝛼
1+𝜃 x+1 - 1𝛼

1+2𝜃 x+1
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Table 6. Assuming Different Distributions for Claims Frequency from Sweden (Dataset 1)

Obs Freq Poisson ZIP Neg. Bin ZINB PQTWED PWED N2-MPD N1-MPD

0 63878 63854.63 63878.11 63877.73 63893.56 63880.07 63858.25 63848.59 63855.13
1 643 689.63 643.61 644.62 629.97 640.82 682.39 693.41 687.07
2 27 3.72 25.58 24.43 23.26 26.65 7.28 5.95 5.75

𝜃=0.0032 𝜃=41.1176
𝜃=0.0795 𝜃=0.1536 𝛼̄=0.9264 𝛼̄=0.0763 𝜃=92.713 𝜃=94.7556 𝜃=138.5738

Estimates 𝜃=0.0108 𝛼̄=0.8642 𝜆=0.9343 𝜆=-40.71 𝜆=-3.0010 𝜆=714.615 𝛼̄=0.7961
-2 LL 7744.00 7681.76 7683.00 7714.64 7681.24 7714.114 7723.736 7724.324

Chi-Square 148.64 0.08 0.27 0.88 0.01 55.68 78.12 81.41

Table 7. Assuming Different Distributions for Claims Frequency from Australia (Dataset 2)

Obs Freq Poisson ZIP Neg. Bin ZINB PQTWED PWED N2-MPD N1-MPD

0 63232 63091.61 63230.49 63230.60 63317.89 63232.51 63245.08 63195.49 63184.65
1 4333 4593.07 4325.83 4330.57 4252.49 4330.56 4306.47 4399.89 4418.98
2 271 167.19 286.59 276.48 261.98 274.16 284.36 246.57 239.84
3 18 4.06 12.66 17.22 21.45 17.55 18.76 13.29 11.93
4 2 0.07 0.42 1.06 1.97 1.14 1.24 0.72 0.57

𝜃=0.0067 𝜃=14.1614
Estimates 𝜃=0.0728 𝜃=0.1325 𝜃=1.1569 𝛼̄=0.8776 𝛼̄=0.1836 𝜃=14.1595 𝜃=16.4989 𝜃=20.6170

𝛼̄=0.4507 𝜆=0.9408 𝜆=-76.06 𝜆=7.1120 𝜆=32.1403 𝛼̄=0.5140 𝜃=20.6170
-2 LL 36203.00 36104.40 36099.36 36211.16 36099.16 36099.82 36104.92 36108.9

Chi-Square 177.66 9.07 0.98 2.51 0.70 1.29 7.40 12.40

Table 8. Assuming Different Distributions for Claims Frequency from Belgium (Dataset 3)

Obs Freq Poisson ZIP Neg. Bin ZINB PQTWED PWED N2-MPD N1-MPD

0 57178 56949.76 57177.48 57188.34 57249.63 57179.28 57178.37 57138.80 57120.00
1 5167 6019.59 5584.80 5581.31 5558.90 5597.59 5601.97 5671.46 5703.79
2 446 318.14 504.87 485.28 438.37 475.70 475.68 451.34 441.60
3 50 11.21 30.43 40.47 45.91 41.96 39.44 34.52 31.32
4 8 0.30 1.38 3.30 5.40 4.00 3.25 2.66 2.14

𝜃=0.0078 𝜃=38.1142
Estimates 𝜃=0.1057 𝜃=0.1808 𝜃=1.2791 𝛼̄=0.8435 𝛼̄=0.7753 𝜃=11.1280 𝜃=11.16729 𝜃=14.192

𝛼̄=0.4153 𝜆=0.9237 𝜆=71.13 𝜆=-0.8021 𝜆=4.7004 𝛼̄=0.5483
-2 LL 44301.08 44150.60 44128.62 44273.14 44125.14 44127.74 44131.8 44138.26

Chi-Square 413.84 51.55 12.33 2.44 7.46 11.64 18.25 28.64

Table 9. Assuming Different Distributions for Claims Frequency from Turkey (Dataset 4)

Obs Freq Poisson ZIP Neg. Bin ZINB PQTWED PWED N2-MPD N1-MPD

0 8544 8292.42 8544.19 8543.47 8561.78 8537.64 8535.03 8456.65 8441.51
1 1796 2201.64 1759.23 1795.62 1807.66 1808.11 1808.98 1934.19 1955.13
2 370 292.27 430.75 375.71 331.89 369.40 373.12 350.52 349.68
3 81 25.87 70.31 78.50 81.03 77.57 76.90 60.18 57.10
4 23 1.72 8.61 16.39 22.23 16.64 15.85 10.30 8.95

𝜃=0.0055 𝜃=3.5157
Estimates 𝜃=0.2655 𝜃=0.4897 𝜃=1.0090 𝛼̄=0.6348 𝛼̄=0.2636 𝜃=3.8520 𝜃=4.5848 𝜃=5.6519

𝛼̄=0.4579 𝜆=0.7917 𝜆=82.4300 𝜆=14.2414 𝜆=43.1422 𝛼̄=0.4868
-2 LL 14306.32 14077.82 14059.42 14114.12 14059.92 14059.65 14082.7 14091.36

Chi-Square 484.41 35.02 2.84 4.51 2.67 3.57 34.74 47.42
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the Negative Binomial distribution provides the second best
fit.

From Table 8, the Poisson-QTWED provides the least
-2LL for the third dataset while its chi-square goodness of fit
statistics is second to that of Zero Inflated Negative Binomial
distribution. The three special form of the new proposition
(PWED, N2-MPD, and N1-MPD) also give better fit to the
dataset that bot Poisson and the ZIP distributions.

For the fourth dataset, Table 9 shows that the new distri-
butions has the least chi-square goodness of fit statistics (2.67)
and its -2LL is not distinguishable from the best two (obtained
for Negative Binomial and PWED distributions).

4. CONCLUSION

Using the quadratic transmutation map on the weighted expo-
nential distribution to obtain a new mixing distribution, this
paper introduce a new three-parameter mixed Poisson distri-
bution named the Poisson Quadratic Transmuted Weighted
Exponential Distribution (Poisson-QTWED). Basic statistical
properties of both mixing distribution and the mixed Poisson
distribution are obtained. Shapes of the mixing distribution
is observed to be similar to the shapes of the mixed Poisson
distribution. For various parameter combinations, skewness,
kurtosis, and the dispersion index of the new distribution are
assessed in a simulation study. Using the maximum likelihood
estimation, the distribution is assessed on four dispersed claim
frequency with high percentage of zero counts from differ-
ent countries. Comparisons are made with the Poisson and
negative binomial distributions (along with their respective
zero-inflated forms). Results show that the new distribution
gives satisfactory fit to the datasets and hence can serve as a
better alternative to model dispersed observations with many
zero.
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