Fabrication and Optimization of Primary Batteries Using Ni/Graphene Nanosheet Electrodes

Kerista Tarigan, Rikson Siburian, Erika Arta Mevia Sitorus, Frikson Jony Purba, Yosia Gopas Oetama Manik

Abstract

This study aims to investigate the impact of varying the mass ratio of Ni to Graphene Nano Sheets (GNS) and how incorporating GNS affects the performance of a primary battery prototype (Ni/GNS//electrolyte//GNS). The primary battery prototype was developed using both impregnation and alloy methods. Different mass ratios of Ni/GNS to electrolyte to GNS were tested, including ratios of 1:2:1 (A), 2:2:1 (B), 1:2:2 (C), 2:1:2 (D), and 1:1:2 (E). The characterization of GNS, Ni/GNS, and the primary battery prototype involved using X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) instruments. A multimeter was employed to measure electrical conductivity, energy density, and power density. A potentiostat/galvanostat was used to measure cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis showed a broad and weak peak at 2θ= 24.32° for GNS, confirming its successful synthesis. Additionally, a peak at 2θ = 43.5° indicated effective deposition of Ni on the GNS surface in Ni/GNS. The SEM-EDX results supported the XRD findings, showing regularly spaced pores and a thin surface layer in GNS. Notably, white spots on the graphene surface in Ni/GNS indicated successful Ni deposition. In terms of electrical conductivity, the highest value was observed in the primary battery prototype for sample D (2:1:2), which measured 1.11 S/cm2. These results were also supported by measurements of energy density and power density in sample D, which achieved the highest values among all samples, with 144,788 Wh/kg and 252,500 W/kg, respectively. Moreover, the CV and EIS measurements remained stable at 0.30 kΩ and 0.88 kΩ, suggesting that GNS could potentially conduct electrons owing to its electrical conductivity.

References

Alessia, A., B. Alessandro, V. Maria, V. Carlos, and B. Francesca (2021). Challenges for Sustainable Lithium Supply: A Critical Review. Journal of Cleaner Production, 300; 126954

Ali, M. J. M., M. M. Radhy, and E. M. Ali (2022). Synthesis and Characterization of Copper Oxide Nanoparticles and Their Application for Solar Cell. Materials Today: Proceedings, 60; 917–921

An, X., C. Liu, J. Liu, J. Liu, and Y. Liu (2024). Reconstructing Hydrogen Bond Network with Chaotropic Salt Enables Low-Temperature and Long-Life Nickel-Zinc Batteries. Journal of Power Sources, 596; 234096

Baqiya, M. A., A. Y. Nugraheni, W. Islamiyah, A. F. Kurniawan, M. M. Ramli, S. Yamaguchi, Y. Furukawa, S. Soontaranon, E. G. R. Putra, and Y. Cahyono (2020). Structural Study on Graphene-Based Particles Prepared from Old Coconut Shell by Acid–Assisted Mechanical Exfoliation. Advanced Powder Technology, 31(5); 2072–2078

Casas-Cabanas, M., M. D. Radin, J. Kim, C. P. Grey, A. Van der Ven, and M. R. Palacín (2018). The Nickel Battery Positive Electrode Revisited: Stability and Structure of the β-Niooh Phase. Journal of Materials Chemistry A, 6(39); 19256–19265

Chameh, B., M. H. Saznaghi, T. Shahalizade, S. Javanmardi, H. Samandari, M. Molababaei, B. Raissi, A. Aghaei, M. S. Yaghmaee, and R. Riahifar (2024). Electrophoretic Deposition of Graphene Oxide As a Stabilizing Layer on the Ni-Rich Layered Oxide Electrodes for Enhancing the Cycling Stability of Li-Ion Cathodes. Journal of Energy Storage, 81; 110415

Chang, J., Z. Hu, J. Li, D. Wu, Z. Lian, F. Xu, K. Jiang, and Z. Gao (2021). Ultrathin NiAl Layered Double Hydroxide-Reduced Graphene Oxide Composite Nanosheets Array with High Battery Performances for Hybrid Supercapacitor and Hybrid Battery. Applied Surface Science, 538; 148106

Chen, X., Y. Jia, Z. Shi, Q. Le, J. Li, M. Zhang, M. Liu, and A. Atrens (2021a). Understanding the Discharge Behavior of an Ultra-High-Purity Mg Anode for Mg–Air Primary Batteries. Journal of Materials Chemistry A, 9(37); 21387–21401

Chen, X., X. Liu, Q. Le, M. Zhang, M. Liu, and A. Atrens (2021b). A Comprehensive Review of the Development of Magnesium Anodes for Primary Batteries. Journal of Materials Chemistry A, 9(21); 12367–12399

Cui, Z. and A. Manthiram (2023). Thermal Stability and Out-gassing Behaviors of High-Nickel Cathodes in Lithium-Ion Batteries. Angewandte Chemie International Edition, 62(43); e202307243

Dahal, A. and M. Batzill (2014). Graphene–Nickel Interfaces: A Review. Nanoscale, 6(5); 2548–2562

Diantoro, M., I. Istiqomah, O. P. D. Lestari, Y. Al Fath, Y. Yudyanto, C. I. Yogihati, M. Munasir, D. H. Kusumawati, and Z. B. Aspanut (2023). A Comprehensive Study of Binder Polymer for Supercapattery Electrode Based on Activated Carbon and Nickel-Silicon Composite. Materials Science for Energy Technologies, 6; 368–381

Dixit, M., B. Markovsky, F. Schipper, D. Aurbach, and D. T. Major (2017). Origin of Structural Degradation during Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials. The Journal of Physical Chemistry C, 121(41); 22628–22636

Feng, J. and Z. Guo (2019). Wettability of Graphene: From Influencing Factors and Reversible Conversions to Potential Applications. Nanoscale Horizons, 4(2); 339–364

Ha, S., C. Lim, and Y.-S. Lee (2022). Fluorination Methods and the Properties of Fluorinated Carbon Materials for Use As Lithium Primary Battery Cathode Materials. Journal of Industrial and Engineering Chemistry, 111; 1–17

He, L., G. Wang, N. u. R. Lashari, Z. Guo, and M. Li (2023). Polypyrrole-Derived Carbon Coated NiCoMn Layered Double Hydroxides for High-Performance Supercapacitors. ACS Applied Nano Materials, 6(18); 16400–16413

Hu, X., L. Xu, X. Lin, and M. Pecht (2020). Battery Lifetime Prognostics. Joule, 4(2); 310–346

Kirubasankar, B., V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, and Z. Guo (2018). In Situ Grown Nickel Selenide on Graphene Nanohybrid Electrodes for High Energy Density Asymmetric Supercapacitors. Nanoscale, 10(43); 20414–20425

Kong, X., Y. Zhu, H. Lei, C. Wang, Y. Zhao, E. Huo, X. Lin, Q. Zhang, M. Qian, and W. Mateo (2020). Synthesis of Graphene-Like Carbon from Biomass Pyrolysis and Its Applications. Chemical Engineering Journal, 399; 125808

Krawczyk, P., B. Gurzęda, and A. Bachar (2019). Thermal Exfoliation of Electrochemically Obtained Graphitic Materials. Applied Surface Science, 481; 466–472

Kumar, R., S. Sahoo, E. Joanni, R. K. Singh, K. Maegawa, W. K. Tan, G. Kawamura, K. K. Kar, and A. Matsuda (2020). Heteroatom Doped Graphene Engineering for Energy Storage and Conversion. Materials Today, 39; 47–65

Lee, S., J. Hwang, C. Park, S. Ahn, K. Do, S. Kim, and H. Ahn (2023). Efficient and Scalable Encapsulation Process of Highly Conductive 1T-MoS2 Nanosheets on Ni-Rich LiNi0.83Co0.11Mn0.06O2 Cathode Materials for High-Performance Lithium-Ion Batteries. Chemical Engineering Journal, 470; 144209

Lim, K. J. H., G. Yilmaz, Y.-F. Lim, and G. W. Ho (2018). Multi-compositional Hierarchical Nanostructured Ni3S2@MoSx/NiO Electrodes for Enhanced Electrocatalytic Hydrogen Generation and Energy Storage. Journal of Materials Chemistry A, 6(41); 20491–20499

Mahmood, M., S. Zulfiqar, M. F. Warsi, M. Aadil, I. Shakir, S. Haider, P. O. Agboola, and M. Shahid (2022). Nanostructured V2O5 and Its Nanohybrid with Mxene As an Efficient Electrode Material for Electrochemical Capacitor Applications. Ceramics International, 48(2); 2345–2354

Manalu, A., K. Tarigan, S. Humaidi, M. Ginting, K. Sebayang, M. Rianna, M. Hamid, A. Subhan, P. Sebayang, and I. P. Manalu (2022). Synthesis, Microstructure and Electrical Properties of NiCo2O4/rGO Composites as Pseudocapacitive Electrode for Supercapacitors. International Journal of Electrochemical Science, 17(3); 22036

Meng, Q.-L., H.-C. Liu, Z. Huang, S. Kong, X. Lu, P. Tomkins, P. Jiang, and X. Bao (2016). Mixed Conduction Properties of Pristine Bulk Graphene Oxide. Carbon, 101; 338–344

Moulai, F., B. Messaoudi, L. Zerroual, T. Hadjersi, and A. Achour (2020). Assembled Manganese and Its Nanostructured Manganese Dioxide Rich Electrodes for a New Primary Battery. Materials Chemistry and Physics, 244; 122717

Murata, H., Y. Nakajima, N. Saitoh, N. Yoshizawa, T. Suemasu, and K. Toko (2019). High-Electrical Conductivity Multilayer Graphene Formed by Layer Exchange with Controlled Thickness and Interlayer. Scientific reports, 9(1); 4068

Ong, H. C., W. Chen, Y. Singh, Y. Y. Gan, C. Chen, and P. L. Show (2020). A State-Of-The-Art Review on Thermochemical Conversion of Biomass for Biofuel Production: A TG-FTIR Approach. Energy Conversion and Management, 209; 112634

Otgonbayar, Z., K. N. Fatema, S. Yang, I. Kim, M. Kim, S. E. Shim, and W. Oh (2021). Temperature Dependence for High Electrical Performance of Mn-Doped High Surface Area Activated Carbon (HSAC) As Additives for Hybrid Capacitor. Scientific Reports, 11(1); 534

Porzio, J. and C. D. Scown (2021). Life-Cycle Assessment Considerations for Batteries and Battery Materials. Advanced Energy Materials, 11(33); 2100771

Reyes, C., R. Somogyi, S. Niu, M. A. Cruz, F. Yang, M. J. Catenacci, C. P. Rhodes, and B. J. Wiley (2018). Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Applied Energy Materials, 1(10); 5268–5279

Saleh, A., F. A. Amhadin, and I. Novianty (2022). Synthesis of Reduced Graphene Oxide and Zinc Oxide Composite from Candlenut Shell Charcoal (Aleuritas moluccana). Elkawnie: Journal of Islamic Science and Technology, 8(1); 1–11

Sayahpour, B., H. Hirsh, S. Bai, N. B. Schorr, T. N. Lambert, M. Mayer, W. Bao, D. Cheng, M. Zhang, and K. Leung (2022). Revisiting Discharge Mechanism of CFx As a High Energy Density Cathode Material for Lithium Primary Battery. Advanced Energy Materials, 12(5); 2103196

Siburian, R., R. Goei, H. Manurung, S. P. Aritonang, C. Simanjuntak, F. Hutagalung, I. Anshori, Y. Alias, S. Paiman, and J. Affi (2023a). Distribution Model of Iron (Fe) on Fe/graphene Nano Sheets. Ceramics International, 49(17); 28571–28579

Siburian, R., F. Hutagalung, O. Silitonga, S. Paiman, L. Simatupang, C. Simanjuntak, S. P. Aritonang, Y. Alias, L. Jing, and R. Goei (2023b). The New Materials for Battery Electrode Prototypes. Materials, 16(2); 555

Siburian, R., S. Paiman, F. Hutagalung, L. Simatupang, R. Goei, and M. M. Rusop (2022). Developing Nickel/Graphene Nano Sheets As an Alternative Primary Battery Anode. Ceramics International, 48(9); 12897–12905

Siburian, R. and O. Silitonga (2022). Performance of Primary Battery Prototype: Cu/Graphene Nano Sheets//Electrolyte//C-π (Graphite, Graphene Nano Sheets, N–Graphene Nano Sheets). In AIP Conference Proceedings, volume 2638. AIP Publishing

Siburian, R., L. W. Tang, Y. Alias, A. I. Y. Tok, R. Goei, C. Simanjuntak, K. Tarigan, S. Paiman, B. T. Goh, and I. Anshori (2023c). Coconut Waste to Green Nanomaterial: Large Scale Synthesis of N Doped Graphene Nano Sheets. Nano-Structures & Nano-Objects, 36; 101061

Song, Z., C. Zhang, X. Fu, H. Zhang, J. Xian, and J. Lin (2021). Graphene Nanosheet As a New Particle Dispersant for the Jet-Electrodeposition of High-Performance Ni-PWC Composite Coatings. Surface and Coatings Technology, 425; 127740

Sookhakian, M., G. B. Tong, and Y. Alias (2020). In-Situ Electrodeposition of Rhodium Nanoparticles Anchored on Reduced Graphene Oxide Nanosheets As an Efficient Oxygen Reduction Electrocatalyst. Applied Organometallic Chemistry, 34(3); e5370

Sun, B., W. Tang, H. Xiang, W. Xu, Y. Cong, G. Yuan, H. Zhu, Q. Zhang, and X. Li (2022). Improving Electron and Ion Transport by Constructing 3D Graphene Nanosheets Sandwiched between Porous Carbon Nanolayers Produced from Resorcinol-Formaldehyde Resin for High-Performance Supercapacitor Electrodes. New Carbon Materials, 37(3); 564–574

Supeno, M. and R. Siburian (2020). New Route: Convertion of Coconut Shell Tobe Graphite and Graphene Nano Sheets. Journal of King Saud University-Science, 32(1); 189–190

Takasu, Y. and Y. Murakami (2000). Design of Oxide Electrodes with Large Surface Area. Electrochimica Acta, 45(25- 26); 4135–4141

Tian, H., W. Bao, Y. Jiang, L. Wang, L. Zhang, O. Sha, C. Wu, and F. Gao (2018). Fabrication of Ni-Al LDH/Nitramine-N-Doped Graphene Hybrid Composites Via a Novel Self-Assembly Process for Hybrid Supercapacitors. Chemical Engineering Journal, 354; 1132–1140

Wan, S., L. Jiang, and Q. Cheng (2020). Design Principles of High-Performance Graphene Films: Interfaces and Alignment. Matter, 3(3); 696–707

Wang, M., P.-L. Tremblay, and T. Zhang (2021). Optimizing the Electrical Conductivity of Polyacrylonitrile/polyaniline with Nickel Nanoparticles for the Enhanced Electrostimulation of Schwann Cells Proliferation. Bioelectrochemistry, 140; 107750

Wang, Z., J. Chang, L. Chen, Y. Li, D. Wu, F. Xu, K. Jiang, and Z. Gao (2019). Al Doped Co Hydroxyl Fluoride Nanosheets Arrays As Efficient Faradaic Electrode for Hybrid Supercapacitor. Electrochimica Acta, 323; 134815

Wei, Z., J. Cheng, R. Wang, Y. Li, and Y. Ren (2021). From Spent Zn–MnO2 Primary Batteries to Rechargeable Zn–MnO2 Batteries: A Novel Directly Recycling Route with High Battery Performance. Journal of Environmental Management, 298; 113473

Xie, S., J. Gou, B. Liu, and C. Liu (2019). Nickel-Cobalt Selenide As High-Performance and Long-Life Electrode Material for Supercapacitor. Journal of Colloid and Interface Science, 540; 306–314

Yang, W., M. Ni, X. Ren, Y. Tian, N. Li, Y. Su, and X. Zhang (2015). Graphene in Supercapacitor Applications. Current Opinion in Colloid & Interface Science, 20(5-6); 416–428

Zou, Q., Q. Le, X. Chen, Y. Jia, C. Ban, T. Wang, H. Wang, R. Guo, L. Ren, and A. Atrens (2022). The Influence of Ga Alloying on Mg-Al-Zn Alloys as Anode Material for Mg-air Primary Batteries. Electrochimica Acta, 401; 139372

Authors

Kerista Tarigan
kerista@usu.ac.id (Primary Contact)
Rikson Siburian
Erika Arta Mevia Sitorus
Frikson Jony Purba
Yosia Gopas Oetama Manik
Tarigan, K., Siburian, R., Sitorus, E. A. M., Purba, F. J., & Manik, Y. G. O. . (2024). Fabrication and Optimization of Primary Batteries Using Ni/Graphene Nanosheet Electrodes. Science and Technology Indonesia, 9(2), 413–426. https://doi.org/10.26554/sti.2024.9.2.413-426

Article Details