Molecular Docking of Flavonoids from Extract of Roselle (Hibiscus sabdariffa L.) Calyx on PBP2a as the Basis for Antibacterial Activity Against Methicillin Resistant Staphylococcus aureus

Firmansyah Ardian Ramadhani, Marsha Fendria Prastika, Nuril Fikriyah, Isnaeni, Nuzul Wahyuning Diyah

Abstract

The increasing bacterial resistances to antibiotics are serious threat to world health. In Indonesia, there are resistant bacteria such as Methicillin Resistant Staphylococcus aureus (MRSA). In order to overcome the problem, the compounds contained in the Hibiscus sabdariffa L. are potential to be developed as new antibacterial against MRSA. To confirm the antibacterial activity, the extract of roselle calyx was tested against MRSA. The twelve compounds contained in the extract was docked into binding site of PBP2a using Autodock 4.2.6. The results showed MIC 2.5% of roselle extract. Two flavonoid compounds comply the Lipinski’s rules and the docking results showed all compounds had higher binding affinity than reference ligand ceftobiprole. The quantitative structure-physicochemical property relationship (QSPR) found that steric property (CMR) and energy (Etotal) of ligand contributed to the binding affinity against PBP2a. It concluded kaempferol-rutinoside was the most potential compound from H. sabdariffa that could be selected as lead compound to be develop as antibacterial agents.

References

Abdel-Shafi, S., A.-R. Al-Mohammadi, M. Sitohy, B. Mosa, A. Ismaiel, G. Enan, and A. Osman (2019). Antimicrobial Activity and Chemical Constitution of the Crude, Phenolic-Rich Extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules, 24(23)

Alhadrami, H. A., A. A. Hamed, H. M. Hassan, L. Belbahri, M. E. Rateb, and A. M. Sayed (2020). Flavonoids as Potential Anti-MRSA Agents through Modulation of PBP2A: A Computational and Experimental Study. Antibiotics, 9(9); 1–16

Bridson, E. Y. (2006). The OXOID Manual. OXOID Limited : England

Bush, K. and P. A. Bradford (2016). β-Lactams and β-Lactamase Inhibitors An Overview. Cold Spring Harbor Perspectives in Medicine, 6(11); 1–22

Carretto, E., R. Visiello, and P. Nardini (2018). Methicillin Resistance in Staphylococcus aureus. Pet to-Man Travelling Staphylococci: A World in Progress, 85; 225–235

Castro-Alvarez, A., A. M. Costa, and J. Vilarrasa (2017). The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures. Molecules, 22(1); 136

Da-Costa-Rocha, I., B. Bonnlaender, H. Sievers, I. Pischel, and M. Heinrich (2014). Hibiscus sabdariffa L.–A Phyto-chemical and Pharmacological Review. Food Chemistry, 165; 424–443

Fitranda, M., S. I. Salasia, O. Sianipar, D. A. Dewananda, A. Z. Arjana, F. Aziz, and M. Wasissa (2023). Methicillin-Resistant Staphylococcus aureus Isolates Derived from Humans and Animals in Yogyakarta, Indonesia. Veterinary World, 16(1); 239–245

Giacobbe, D. R., F. G. De Rosa, V. Del Bono, P. A. Grossi, F. Pea, N. Petrosillo, G. M. Rossolini, C. Tascini, M. Tumbarello, P. Viale, and M. Bassetti (2019). Ceftobiprole: Drug Evaluation and Place in Therapy. Expert Review of Anti-infective Therapy, 17(9); 689–698

Hassan, S. T. S., K. Berchová, and M. Šudomová (2016). Antimicrobial, Antiparasitic and Anticancer Properties of Hibiscus sabdariffa (L.) and Its Phytochemicals: In vitro and In vivo Studies. Ceska a Slovenska Farmacie, 65; 10–14

Isnaeni, I., E. Hendradi, and N. Z. Zettira (2020). Inhibitory Effect of Roselle Aqueous Extracts HPMC 6000 Gel on the Growth of Staphylococcus aureus ATCC 25923. Turkish Journal of Pharmaceutical Sciences, 17(2); 190–196

Jung, E., Y.-H. Kim, and N. Joo (2013). Physicochemical Properties and Antimicrobial Activity of Roselle (Hibiscus sabdariffa L.). Journal of the Science of Food and Agriculture, 93(15); 3769–3776

Kalli, S., C. Araya-Cloutier, J. Hageman, and J.-P. Jean-Paul Vincken (2021). Insights into the Molecular Properties Underlying Antibacterial Activity of Prenylated (Iso)flavonoids against MRSA. Scientific Reports, 11(1); 14180

Kowalska-Krochmal, B. and R. Dudek-Wicher (2021). The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens, 10(2); 165

Kumar, S. and A. K. Pandey (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013; 162750

Lade, S. N., S. S. Burle, S. B. Kosalge, and M. N. Bansode (2022). Antimicrobial and Antioxidant Activity of Hibiscus sabdariffa. Linn (Roselle). International Journal of of Pharmacy Research Dan Technology, 12(1); 22–27

Larsen, J., C. L. Raisen, X. Ba, N. J. Sadgrove, G. F. Padilla-Gonzalez, M. S. J. Simmonds, I. Loncaric, and H. Kerschner (2022). Emergence of Methicillin Resistance Predates the Clinical Use of Antibiotics. Nature, 602; 135–141

Lee, A. S., H. De Lencastre, J. Garau, J. Kluytmans, S. Malhotra-Kumar, A. Peschel, and S. Harbarth (2018). Methicillin-Resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(May); 1-23

Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney (2012). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discover and Development Settings. Advanced Drug Delivery Reviews, 64(Suppl); 4–17

Lobiuc, A., N. E. Pavăl, I. I. Mangalagiu, R. Gheorghit,ă, G. C. Teliban, D. Amăriucăi-Mantu, and V. Stoleru (2023). Future Antimicrobials: Natural and Functionalized Phenolics. Molecules, 28(3)

Morosini, M. (2019). Mechanisms of Action and Antimicrobial Activity of Ceftobiprole. Official Journal of the Spanish Society of Chemotherapy, 32; 3–10

Rashed, K., A. Ćirić, J. Glamočlija, and M. Soković (2014). Antibacterial and Antifungal Activities of Methanol Extract and Phenolic Compounds from Diospyros virginiana L. Industrial Crops and Products, 59; 210–215

Salinas-Moreno, Y., R. Arteaga-Garibay, A. Arroyo-Silva, J. J. Ordaz-Ortiz, J. M. Ruvalcaba-Gómez, and L. A. Gálvez-Marroquín (2023). Antimicrobial Activity and Phenolic Composition of Varieties of Hibiscus sabdariffa L. with Red and White Calyces. CYTA - Journal of Food, 21(1); 1–9

Susanti, M. A., G. S. Mahardhika, L. Rujito, A. B. Darmawan, and D. U. Anjarwati (2020). The Examination of mecA Gene in Methicillin-Resistant Staphylococcus aureus (MRSA) and Inappropriate Antibiotic Uses of Healthcare Workers and Communities in Banyumas. Indonesian Journal of Medicine and Health, 11(3); 257–265

Thebti, A., A. Meddeb, I. Ben Salem, C. Bakary, S. Ayari, F. Rezgui, K. Essafi-Benkhadir, A. Boudabous, and H.-I. Ouzari (2023). Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics, 12(2); 225

Woźnicka, E., A. Kuźniar, D. Nowak, E. Nykiel, M. Kopacz, J. Gruszecka, and K. Golec (2013). Comparative Study on the Antibacterial Activity of Some Flavonoids and Their Sulfonic Derivatives. Acta Poloniae Pharmaceutica-Drug Research, 70(3); 567–571

Wu, X., C. Wang, L. He, H. Xu, C. Jing, Y. Chen, A. Lin, and J. Deng (2023). Antimicrobial Resistance Profile of Methicillin-Resistant Staphylococcus aureus Isolates in Children Reported from the ISPED Surveillance of Bacterial Resistance, 2016–2021. Frontiers in Cellular and Infection Microbiology, 13; 1–8

Authors

Firmansyah Ardian Ramadhani
Marsha Fendria Prastika
Nuril Fikriyah
Isnaeni
Nuzul Wahyuning Diyah
nuzul-w-d@ff.unair.ac.id (Primary Contact)
Ramadhani, F. A. ., Prastika, M. F. ., Fikriyah, N. ., Isnaeni, & Diyah, N. W. (2024). Molecular Docking of Flavonoids from Extract of Roselle (Hibiscus sabdariffa L.) Calyx on PBP2a as the Basis for Antibacterial Activity Against Methicillin Resistant Staphylococcus aureus. Science and Technology Indonesia, 9(2), 487–493. https://doi.org/10.26554/sti.2024.9.2.487-493

Article Details