Characteristics and Dosimetric Properties of Tissue-Equivalent Thermoluminescent Glass Detector Based on Al-Li-Zn, Borate Oxide Dope Dy3+
Abstract
Functionality and dosimetric properties of a tissue-equivalent thermoluminescent glass detector doped with Dy3+. This work investigated an Aluminium-Lithium-Zinc borate oxide matrix using the melting-quench method. X-ray diffraction confirms the glass sample is amorphous. Dysprosium ions doping raises the glass’s tissue equivalent effective atomic number (Zeff.), improving its ability to absorb radiation and its sensitivity, with reproducibility almost at the tolerable limit. The glass detector also reduces the fading rate and signal loss over time. The minimum detectable dose values were 53.04 mGy and 45.1 mGy for the un-doped and 1.5 mol Dy3+ doped Al-Li-Zn borate glasses, respectively. A bright peak was seen in photoluminescence spectra at 348 nm (yellow), 529 nm (green), and 625 nm (orange hue). These correspond to the Dy3+ transitions at 4H15/2 → 6P7/2, 4F9/2 → 6H15/2, 4F9/2 → 6H15/2, and 4F9/2 → 6H13/2 , respectively. There was a noticeable drop in Tg from 257°C in the undoped sample to 101°C in the doped sample, Tm from 862°C to 815°C, and Tc from 756°C to 444°C in the doped sample. These results may indicate a lower temperature at which the material transitions from a solid to a liquid state and a lower crystallisation threshold. The frequency component and energy of activation of the 1.5 mol Dy3+ doped Aluminium-Lithium-Zinc borate are 2.1×10 27 s-1 and 1.03 eV, respectively. The 1.5 Dy3+ doped Aluminium-Lithium-Zinc borate glasses exhibit promising dosimetric properties of the tissue-equivalent thermoluminescent glass detector, indicating its potential for accurate and consistent radiation dosimetry in various applications.
References
Aljewaw, O. B., M. K. A. Karim, N. Effendy, H. M. Kamari, M. H. M. Zaid, N. M. Noor, A. A. Salim, N. M. Isa, A. B. A. Kadir, M. T. Chew, and A. I. Abokridiga (2023). Physical, Optical and Thermoluminescence Properties of Lithium Aluminum Borate Glass Co-Doped with Dy₂O₃. Radiation Physics and Chemistry, 209; 111004.
Aljewaw, O. B., M. K. A. Karim, H. M. Kamari, M. H. M. Zaid, N. M. Noor, I. N. C. Isa, and M. H. A. Mhareb (2020). Impact of Dy₂O₃ Substitution on the Physical, Structural and Optical Properties of Lithium–Aluminium–Borate Glass System. Applied Sciences (Switzerland), 10(22); 1–17.
Aydas, C., U. R. Yüce, B. Engin, and G. S. Polymeris (2016). Dosimetric and Kinetic Characteristics of Watch Glass Sample. Radiation Measurements, 85; 78–87.
Bootjomchai, C. and R. Laopaiboon (2014). Thermoluminescence Dosimetric Properties and Effective Atomic Numbers of Window Glass. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 323; 42–48.
Bradley, D. A., M. U. Khandaker, and A. Alanazi (2020). Irradiated Glass and Thermoluminescence Yield: Dosimetric Utility Reviewed. Radiation Physics and Chemistry, 170; 108680.
Chen, R. (1969). On the Calculation of Activation Energies and Frequency Factors from Glow Curves. Journal of Applied Physics, 40(2); 570–585.
Chen, R. and S. A. A. W. (1970). Effects of Various Heating Rates on Glow Curves. Journal of Applied Physics, 41(13); 5227–5232.
De Carvalho, A. B., T. F. Barros, P. L. Guzzo, and H. J. Khoury (2012). Manufacturing Polycrystalline Pellets of Natural Quartz for Applications in Thermoluminescence Dosimetry. Materials Research, 15(4); 536–543.
Duragkar, A., A. Muley, N. R. Pawar, V. Chopra, N. S. Dhoble, O. P. Chimankar, and S. J. Dhoble (2019). Versatility of Thermoluminescence Materials and Radiation Dosimetry – A Review. Luminescence, 34(7); 656–665.
Efenji, G. I., I. S. Mustafa, F. A. Kamgba, O. O. Ogunleye, T. H. Khazaalah, N. S. Ezra, H. S. Naeem, H. M. Shariff, M. Jamil, and M. F. I. Abdul Malik (2023). Description and Dosimetric Features of Lithium Borate Glass Doped with Transition Metals for Thermoluminesce, a Re-Evaluation. Physica Scripta, 98(5).
El-Adawy, A., N. E. Khaled, A. R. El-Sersy, A. Hussein, and H. Donya (2010). TL Dosimetric Properties of Li₂O-B₂O₃ Glasses for Gamma Dosimetry. Applied Radiation and Isotopes, 68(6); 1132–1136.
El-Faramawy, N., A. El-Naggar, C. Woda, and M. El-Kinawy (2021). Investigation of TL Dosimetric Parameters of Lithium Borate Glass Doped with Dysprosium. Optical Materials, 113; 110672.
Ezra, N. S., I. S. Mustafa, M. Sayyed, K. Dakok, I. Fadhirul, T. H. Khazaalah, G. Efenji, M. Jamil, H. S. Naeem, A. Oke, and A. S. A. Idriss (2024). Synthesis, and Impact of GaN Deposition on the Physical, Optical, and Structural Properties of Nd³⁺-Doped Na₂O Borate Glasses Prepared with Soda Lime (SLS) Glass as a Silica Source. Optical Materials; 115907.
Furetta, C., M. Prokic, R. Salamon, and R. Prokic (2001). Dosimetric Characteristics of Tissue Equivalent Thermoluminescent Solid TL Detectors Based on Lithium Borate. Nuclear Instruments Methods Phys Res A, 456; 411–417.
Godwin, E., S. M. Iskandar, K. Ferdinand, K. Ogunleye, T. Khazaalah, H. Salah Naeem, N. S. Ezra, M. F. I. Abdul Malik, M. Jamil, and H. M. Shariff (2023). Description and Dosimetric Features of Lithium Borate Glass Doped with Transition Metals for Thermoluminesce, a Re-Evaluation. Physica Scripta, 98; August 2022.
Hashim, S., M. H. A. Mhareb, S. K. Ghoshal, Y. S. M. Alajerami, M. I. Saripan, and D. A. Bradley (2017). Luminescence Features of Dysprosium and Phosphorus Oxide Co-Doped Lithium Magnesium Borate Glass. Radiation Physics and Chemistry, 137; 45–48.
Hegde, V., N. Chauhan, C. S. D. Viswanath, V. Kumar, K. K. Mahato, R. Buwane, and S. J. Dhoble (2019). Photoemission and Thermoluminescence Characteristics of Dy³⁺-Doped Zinc Sodium Bismuth Borate Glasses. Journal of Luminescence, 209; 337–343.
Jaidass, N., C. K. Moorthi, A. M. Babu, and M. R. Babu (2018). Luminescence Properties of Dy³⁺ Doped Lithium Zinc Borosilicate Glasses for Photonic Applications. Heliyon, 4(3); e00555.
Jamil, M., I. S. Mustafa, N. M. Ahmed, S. B. S. Hamid, T. H. Khazaalah, E. Godwin, N. S. Ezra, and H. N. Salah (2023). Poly (Ethylene) Oxide/Erbium Oxide as T₂ and T₁-T₂ Dual-Mode MRI Diagnostic Nanofibres. Ceramics International, 49(13); 22429–22439.
Khandaker, M. U., A. Taheri, and D. A. Bradley (2024). A Systematic Review on the Silica Fibre Thermoluminescence Dosimeters for Medical Applications. Journal of Radioanalytical and Nuclear Chemistry, 333(3); 1507–1530.
Khazaalah, T. H., I. Shahrim Mustafa, H. Al-Ghamdi, A. Abdul Rahman, M. Sayyed, A. H. Almuqrin, M. H. Mohd Zaid, R. Hisam, M. F. I. Abdul Malik, N. Seth Ezra, et al. (2022). The Effect of WO₃-Doped Soda Lime Silica SLS Waste Glass to Develop Lead-Free Glass as a Shielding Material against Radiation. Sustainability, 14(4); 2413.
Mendoza-Anaya, D., A. González-Romero, O. Ávila, P. R. González, and L. Escobar-Alarcón (2018). Thermally Stimulated Luminescence of Li₂B₄O₇
, Ag, P+PTFE. Journal of Luminescence, 204; 176–181.
Mhareb, M. H. A., S. Hashim, S. K. Ghoshal, Y. S. M. Alajerami, M. J. Bqoor, A. I. Hamdan, M. A. Saleh, and M. K. B. A. Karim (2016). Effect of Dy₂O₃ Impurities on the Physical, Optical and Thermoluminescence Properties of Lithium Borate Glass. Journal of Luminescence, 177; 366–372.
Morsi, R. M. M., S. Ibrahim, S. Abo-Naf, and M. M. Morsi (2016). Effect of Alkaline Earth Metal Oxides on the Dielectric, Structural and Physico-Chemical Properties of Lithium–Zinc–Lead-Borates. Journal of Materials Science: Materials in Electronics, 27(4); 4147–4156.
Muhammad, N. A., M. K. A. Karim, H. A. Hassan, M. A. Kamarudin, J. H. D. Wong, and M. J. Ibahim (2019). Estimation of Effective Dose and Organ Cancer Risk from Paediatric Computed Tomography Thorax–Abdomen–Pelvis Examinations. Radiation Physics and Chemistry, 165; 108438.
Pal, M., B. Roy, and M. Pal (2011). Structural Characterisation of Borate Glasses Containing Zinc and Manganese Oxides. Journal of Modern Physics, 02(09); 1062–1066.
Pawar, P. P., S. R. Munishwar, and R. S. Gedam (2017). Intense White Light Luminescent Dy³⁺ Doped Lithium Borate Glasses for W-LED: A Correlation Between Physical, Thermal, Structural and Optical Properties. Solid State Sciences, 64; 41–50.
Pekpak, E., O. Gülhan, and Y. Aysen (2009). Thermoluminescent Characteristics of Lithium Tetraborate. In IV International Boron Symposium. Eskişehir, Turkey, pages 15–17.
Pekpak, E., A. Yilmaz, and G. Ozbayoglu (2014). An Overview on Preparation and TL Characterization of Lithium Borates for Dosimetric Use. The Open Mineral Processing Journal, 3(1); 14–24.
Pekpak, E., A. Yilmaz, and G. Özbayolu (2011). The Effect of Synthesis and Doping Procedures on Thermoluminescent Response of Lithium Tetraborate. Journal of Alloys and Compounds, 509(5); 2466–2472.
Prabhu, N. S., V. Hegde, A. Wagh, M. I. Sayyed, O. Agar, and S. D. Kamath (2019). Physical, Structural and Optical Properties of Sm³⁺ Doped Lithium Zinc Alumino Borate Glasses. Journal of Non-Crystalline Solids, 515; 116–124.
Prabhu, N. S., K. Sharmila, S. Kumaraswamy, H. M. Somashekarappa, M. I. Sayyed, H. Al-Ghamdi, A. H. Almuqrin, and S. D. Kamath (2021). An Examination of the Radiation-Induced Defects and Thermoluminescence Characteristics of Sm₂O₃ Doped BaO-ZnO-LiF-B₂O₃ Glass System for ????-Dosimetry Application. Optical Materials, 118; 111252.
Razak, N. A., S. Hashim, M. H. A. Mhareb, and N. Tamchek (2016). Photoluminescence and Thermoluminescence Properties of Li2O-Na2O-B2O3 Glass. In Luminescence, 31(3); 754–759.
Rivera, T. (2012). Thermoluminescence in Medical Dosimetry. Applied Radiation and Isotopes, 71(SUPPL.); 30–34.
Saidu, A., H. Wagiran, M. Saeed, and Y. Alajerami (2014). Structural Properties of Zinc Lithium Borate Glass. Optics and Spectroscopy, 117; 396–400.
Saidu, A., H. Wagiran, M. A. Saeed, and Y. S. M. Alajerami (2015). Thermoluminescence Characteristics of Zinc Lithium Borate Glass Activated with Cu+ (ZnO-Li2O-B2O3+) for Radiation Dosimetry. Journal of Radioanalytical and Nuclear Chemistry, 304(2); 627–632.
Saidu, A., H. Wagiran, M. A. Saeed, H. K. Obayes, A. Bala, and F. Usman (2018). Thermoluminescence Response of Rare Earth Activated Zinc Lithium Borate Glass. Radiation Physics and Chemistry, 144; 413–418.
Sani, S. F. A., M. H. U. Othman, A. Alqahtani, K. S. Almuqren, F. H. Alkallas, and D. A. Bradley (2020). Low-Cost Commercial Borosilicate Glass Slides for Passive Radiation Dosimetry. PLoS ONE, 15(12 December); 1–16.
Satkar, R. C., A. R. Kadam, D. A. Ovhal, and S. Dhoble (2021). Inorganic Thermoluminescent Phosphors in Radiation Dosimetry: An Overview. In Journal of Physics: Conference Series, volume 1913. IOP Publishing, page 012023.
Shafaei, M. A. and S. Moradi (2023). Production of Thermoluminescent Dosimetry (TLD) Chip from LiF Powder Using Thermal Process Method and Comparing Energy and Density of its Traps with TLD100. International Journal of Applied Physics, 10(2); 7–15.
Stanković Petrović, J. S., Z. I. Kneźević, N. L. Krźanović, M. C. Majer, M. Z. Źivanović, and O. F. Ciraj-Bjelac (2021). Review of the Thermoluminescent Dosimetry Method for the Environmental Dose Monitoring. Nuclear Technology and Radiation Protection, 36(2); 150–162.
Ullah, B., M. B. Kakakhel, S. Ur Rehman, M. T. Siddique, M. Munir, K. Ahmad, M. M. Mahmood, M. Wazir-ud Din, and I. Anjum (2024). Synthesis and Dosimetric Characterisation of Lithium Tetraborate (Li2B4O7
,Ag) Thermoluminescent Dosimeter with Improved Reproducibility and Reusability. Radiation Physics and Chemistry, 220; 111704.
Wahib, N. B., M. U. Khandaker, S. F. Abdul Sani, K. S. Al-Mugren, D. A. Bradley, A. Sulieman, M. R. I. Faruque, and M. I. Sayyed (2020). The Potential Use of Car Windscreens for Post-Accident Dose Reconstruction in the Periphery of Nuclear Installations. Applied Sciences (Switzerland), 10(20); 1–14.
White, A. J., S. P. Jollota, C. G. Hammer, A. U. Khan, L. A. DeWerd, and W. S. Culberson (2024). Thermoluminescent Dosimeters (TLD-100) for Absorbed Dose Measurements in Alpha-Emitting Radionuclides. Applied Radiation and Isotopes, 208; 111307.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.