Micro-Magnetic Activity of the Fabricated MnFe2O4 via Co-Precipitation from Natural Iron Sand
Abstract
This study explores the micromagnetic behaviour of MnFe2O4 derived from natural iron sand through the coprecipitation method, without the need for calcination. Using manganese chlo-ride and iron sand as precursors, one can create MnFe2O4. Through the utilisation of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Vibrating Sample Magnetometer (VSM), one can effectively analyse and understand the crystal structure, morphology, and magnetic properties. The crystal size was reduced by a fac-tor of 0.40 nm, as revealed by XRD crystal structure analysis. Additionally, the XRD results indicated the absence of impurities, confirming the presence of a single phase. In addition, the SEM analysis revealed that samples 1, 2, and 3 underwent agglomeration. The particles have a cubic shape. The analysis using EDX indicates that there are no other elements present in the Mn, Fe, and O. Additionally, the VSM analysis confirms that the sample exhibits magnetic hardness. Sample 1 exhibits exceptional magnetic properties, with Ms values of 217.53 emu/g, Mr 34.27 emu/g, and Hc 127.42 emu/g. Photoluminescence (PL) spectroscopy was used to observe the optical properties of MnFe2O4. Sample 1 exhibits a distinct emission spectrum at 440 nm, representing the purple band. Sample 2 displays a sharp emission spectrum at 448 nm, indicating the blue band. Lastly, Sample 3 demonstrates a clear emission spectrum at 427 nm, signifying the purple band.
References
Akhlaghi, N. and G. Najafpour-Darzi (2021). Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application - A Review. Journal of Industrial and Engineering Chemistry, 103; 292–304
Al-Zahrani, S. A., A. Manikandan, K. Thanrasu, A. Dinesh, K. K. Raja, M. A. Almessiere, Y. Slimani, A. Baykal, S. Bhuminathan, S. R. Jayesh, J. Ahmed, H. S. Alorfi, M. A. Hussein, I. Khan, and A. Khan (2022). Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals, 12(2); 268
Amulya, M. A. S., H. P. Nagaswarupa, M. R. A. Kumar, C. R. Ravikumar, and K. B. Kusuma (2021). Sonochemical Synthesis of MnFe2O4 Nanoparticles and Their Electrochemical and Photocatalytic Properties. Journal of Physics and Chemistry of Solids, 148; 109661
Arun, T., T. Kavin Kumar, R. Udayabhaskar, M. J. Morel, G. Rajesh, R. V. Mangalaraja, and A. Akbari-Fakhrabadi (2020). Size Dependent Magnetic and Capacitive Performance of MnFe2O4 Magnetic Nanoparticles. Materials Letters, 276; 128240
Bhandare, S. V., R. Kumar, A. V. Anupama, H. K. Choudhary, V. M. Jali, and B. Sahoo (2020). Mechanistic Insights into the Sol-Gel Synthesis of Complex (Quaternary) Co-Mn-Zn Spinel Ferrites: An Annealing Dependent Study. Ceramics International, 46(11); 17400–17415
Chakradhary, V. K. and M. J. Akhtar (2020). Highly Coercive Strontium Hexaferrite Nanodisks for Microwave Absorption and Other Industrial Applications. Composites Part B: Engineering, 183; 107667
Cheng, L. and Y. Ji (2024). Photocatalytic Activation of Sulfite by N-Doped Porous Biochar/MnFe2O4 Interface-Driven Catalyst for Efficient Degradation of Tetracycline. Green Energy and Environment, 9(3); 481–484
de Góis, M. M., L. W. de Alencar Souza, C. H. N. Cordeiro, I. B. T. da Silva, and J. M. Soares (2022). Study of Morphology and Magnetism of MnFe2O4-Si2 Composites. Ceramics International, 49; 11552–11562
Dieu Cam, N. T., H. D. Pham, T. D. Pham, T. T. Thu Phuong, C. Van Hoang, M. H. Thanh Tung, N. T. Trung, N. T. Huong, and T. T. Thu Hien (2021). Novel Photocatalytic Performance of Magnetically Recoverable MnFe2O4/BiVO4 for Polluted Antibiotics Degradation. Ceramics International, 47(2); 1686–1692
Herrmann, F. (1991). Teaching the Magnetostatic Field: Problems to Avoid. American Journal of Physics, 59(5); 447–452
Iusipova, I. (2022). Precession Frequency and Switching Time of the Magnetization Vector in the Spin-Valve Active Layer with Perpendicular Anisotropy. IEEE Magnetics Letters, 13; 1–5
Kalaiselvan, C. R., S. S. Laha, S. B. Somvanshi, T. A. Tabish, N. D. Thorat, and N. K. Sahu (2022). Manganese Ferrite (MnFe2O4) Nanostructures for Cancer Theranostics. Coordination Chemistry Reviews, 473; 214809
Kumar, P., S. Pathak, K. Jain, A. Singh, G. A. Basheed, and R. P. Pant (2022). Low-Temperature Large-Scale Hydrothermal Synthesis of Optically Active PEG-200 Capped Single Domain MnFe2O4 Nanoparticles. Journal of Alloys and Compounds, 904; 163992
Li, X., K. T. Chau, M. Cheng, and W. Hua (2012). Comparison of Magnetic-Geared Permanent-Magnet Machines. Progress in Electromagnetics Research, 133; 177–198
López-Ortega, A., E. Lottini, C. D. J. Fernández, and C. Sangregorio (2015). Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 27(11); 4048–4056
Peng, T., Y. Si, J. Qian, Z. Zhang, X. Yan, C. Zhu, and X. Hong (2023). Reduced Graphene Oxide/MnFe2O4 Nanocomposite Papers for Fast Electrical Heating and Microwave Absorption. Applied Surface Science, 613; 156001
Qin, H., H. Cheng, H. Li, and Y. Wang (2020). Degradation of Ofloxacin, Amoxicillin and Tetracycline Antibiotics Using Magnetic Core-Shell MnFe2O4@C-NH2 as a Heterogeneous Fenton Catalyst. Chemical Engineering Journal, 396; 125304
Qu, C., Z. Ge, C. Yang, and X. Wang (2022). Optimization and Simulation of Auxiliary Magnetic Barrier Permanent Magnet Synchronous Machine for Wind Turbine. Distributed Generation and Alternative Energy Journal, 37(3); 501–524
Ravichandran, M. and S. Velumani (2020). Manganese Ferrite Nanocubes as an MRI Contrast Agent. Materials Research Express, 7(1); 016107
Sharifi, S., K. Rahimi, and A. Yazdani (2021). Highly Improved Supercapacitance Properties of MnFe2O4 Nanoparticles by MoS2 Nanosheets. Scientific Reports, 11(1); 8378
Sharifianjazi, F., M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, and M. Shahedi Asl (2020). Magnetic CoFe2O Nanoparticles Doped with Metal Ions: A Review. Ceramics International, 46(11); 18391–18412
Shayestefar, M., A. Mashreghi, S. Hasani, and M. Taghi Rezvan (2022). Optimization of the Structural and Magnetic Properties of MnFe2O4 Doped by Zn and Dy Using Taguchi Method. Journal of Magnetism and Magnetic Materials, 541; 168390
Sukmarani, G., R. Kusumaningrum, A. Noviyanto, F. Fauzi, A. M. Habieb, M. I. Amal, and N. T. Rochman (2020). Synthesis of Manganese Ferrite from Manganese Ore Prepared by Mechanical Milling and Its Application as an Inorganic Heat-Resistant Pigment. Journal of Materials Research and Technology, 9(4); 8497–8506
Thy, L. T. M., N. H. T. My, H. H. P. Tuong, C. V. Chi, T. H. Tu, H. K. P. Ha, H. M. Nam, M. T. Phong, and N. H. Hieu (2020). Synthesis and Adsorption Ability of Manganese Ferrite/Graphene Oxide Nanocomposites for Arsenic(V) Removal from Water. Vietnam Journal of Chemistry, 58(3); 287–291
Westerstrand, B., P. Nordblad, and L. Nordborg (1975). The Magnetocrystalline Anisotropy Constants of Iron and Iron-Silicon Alloys. Physica Scripta, 11(6); 383
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.