Micro-Magnetic Activity of the Fabricated MnFe2O4 via Co-Precipitation from Natural Iron Sand

Martha Rianna, Muhammad Khalid Hussain, Timbangen Sembiring, Herwati Permata Indah Raja Guk-Guk, Kurnia Jesiska Sitorus, Eko Arief Setiadi, Anggito P. Tetuko, Perdamean Sebayang

Abstract

This study explores the micromagnetic behaviour of MnFe2O4 derived from natural iron sand through the coprecipitation method, without the need for calcination. Using manganese chlo-ride and iron sand as precursors, one can create MnFe2O4. Through the utilisation of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Vibrating Sample Magnetometer (VSM), one can effectively analyse and understand the crystal structure, morphology, and magnetic properties. The crystal size was reduced by a fac-tor of 0.40 nm, as revealed by XRD crystal structure analysis. Additionally, the XRD results indicated the absence of impurities, confirming the presence of a single phase. In addition, the SEM analysis revealed that samples 1, 2, and 3 underwent agglomeration. The particles have a cubic shape. The analysis using EDX indicates that there are no other elements present in the Mn, Fe, and O. Additionally, the VSM analysis confirms that the sample exhibits magnetic hardness. Sample 1 exhibits exceptional magnetic properties, with Ms values of 217.53 emu/g, Mr 34.27 emu/g, and Hc 127.42 emu/g. Photoluminescence (PL) spectroscopy was used to observe the optical properties of MnFe2O4. Sample 1 exhibits a distinct emission spectrum at 440 nm, representing the purple band. Sample 2 displays a sharp emission spectrum at 448 nm, indicating the blue band. Lastly, Sample 3 demonstrates a clear emission spectrum at 427 nm, signifying the purple band.

References

Abdullah, M., F. F. Alharbi, R. Y. Khosa, H. A. Alburaih, S. Manzoor, A. G. Abid, H. E. Ali, M. S. Waheed, M. N. Ansari, and H. M. T. Farid (2023). Partial Sulfur Doping Induced Variation in Morphology of MnFe2O4 with Enhanced Electrochemical Performance for Energy Storage Devices. Korean Journal of Chemical Engineering, 40(6); 1518–1528

Akhlaghi, N. and G. Najafpour-Darzi (2021). Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application - A Review. Journal of Industrial and Engineering Chemistry, 103; 292–304

Al-Zahrani, S. A., A. Manikandan, K. Thanrasu, A. Dinesh, K. K. Raja, M. A. Almessiere, Y. Slimani, A. Baykal, S. Bhuminathan, S. R. Jayesh, J. Ahmed, H. S. Alorfi, M. A. Hussein, I. Khan, and A. Khan (2022). Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals, 12(2); 268

Amulya, M. A. S., H. P. Nagaswarupa, M. R. A. Kumar, C. R. Ravikumar, and K. B. Kusuma (2021). Sonochemical Synthesis of MnFe2O4 Nanoparticles and Their Electrochemical and Photocatalytic Properties. Journal of Physics and Chemistry of Solids, 148; 109661

Arun, T., T. Kavin Kumar, R. Udayabhaskar, M. J. Morel, G. Rajesh, R. V. Mangalaraja, and A. Akbari-Fakhrabadi (2020). Size Dependent Magnetic and Capacitive Performance of MnFe2O4 Magnetic Nanoparticles. Materials Letters, 276; 128240

Bhandare, S. V., R. Kumar, A. V. Anupama, H. K. Choudhary, V. M. Jali, and B. Sahoo (2020). Mechanistic Insights into the Sol-Gel Synthesis of Complex (Quaternary) Co-Mn-Zn Spinel Ferrites: An Annealing Dependent Study. Ceramics International, 46(11); 17400–17415

Chakradhary, V. K. and M. J. Akhtar (2020). Highly Coercive Strontium Hexaferrite Nanodisks for Microwave Absorption and Other Industrial Applications. Composites Part B: Engineering, 183; 107667

Cheng, L. and Y. Ji (2024). Photocatalytic Activation of Sulfite by N-Doped Porous Biochar/MnFe2O4 Interface-Driven Catalyst for Efficient Degradation of Tetracycline. Green Energy and Environment, 9(3); 481–484

de Góis, M. M., L. W. de Alencar Souza, C. H. N. Cordeiro, I. B. T. da Silva, and J. M. Soares (2022). Study of Morphology and Magnetism of MnFe2O4-Si2 Composites. Ceramics International, 49; 11552–11562

Dieu Cam, N. T., H. D. Pham, T. D. Pham, T. T. Thu Phuong, C. Van Hoang, M. H. Thanh Tung, N. T. Trung, N. T. Huong, and T. T. Thu Hien (2021). Novel Photocatalytic Performance of Magnetically Recoverable MnFe2O4/BiVO4 for Polluted Antibiotics Degradation. Ceramics International, 47(2); 1686–1692

Herrmann, F. (1991). Teaching the Magnetostatic Field: Problems to Avoid. American Journal of Physics, 59(5); 447–452

Iusipova, I. (2022). Precession Frequency and Switching Time of the Magnetization Vector in the Spin-Valve Active Layer with Perpendicular Anisotropy. IEEE Magnetics Letters, 13; 1–5

Kalaiselvan, C. R., S. S. Laha, S. B. Somvanshi, T. A. Tabish, N. D. Thorat, and N. K. Sahu (2022). Manganese Ferrite (MnFe2O4) Nanostructures for Cancer Theranostics. Coordination Chemistry Reviews, 473; 214809

Kumar, P., S. Pathak, K. Jain, A. Singh, G. A. Basheed, and R. P. Pant (2022). Low-Temperature Large-Scale Hydrothermal Synthesis of Optically Active PEG-200 Capped Single Domain MnFe2O4 Nanoparticles. Journal of Alloys and Compounds, 904; 163992

Li, X., K. T. Chau, M. Cheng, and W. Hua (2012). Comparison of Magnetic-Geared Permanent-Magnet Machines. Progress in Electromagnetics Research, 133; 177–198

López-Ortega, A., E. Lottini, C. D. J. Fernández, and C. Sangregorio (2015). Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 27(11); 4048–4056

Peng, T., Y. Si, J. Qian, Z. Zhang, X. Yan, C. Zhu, and X. Hong (2023). Reduced Graphene Oxide/MnFe2O4 Nanocomposite Papers for Fast Electrical Heating and Microwave Absorption. Applied Surface Science, 613; 156001

Qin, H., H. Cheng, H. Li, and Y. Wang (2020). Degradation of Ofloxacin, Amoxicillin and Tetracycline Antibiotics Using Magnetic Core-Shell MnFe2O4@C-NH2 as a Heterogeneous Fenton Catalyst. Chemical Engineering Journal, 396; 125304

Qu, C., Z. Ge, C. Yang, and X. Wang (2022). Optimization and Simulation of Auxiliary Magnetic Barrier Permanent Magnet Synchronous Machine for Wind Turbine. Distributed Generation and Alternative Energy Journal, 37(3); 501–524

Ravichandran, M. and S. Velumani (2020). Manganese Ferrite Nanocubes as an MRI Contrast Agent. Materials Research Express, 7(1); 016107

Sharifi, S., K. Rahimi, and A. Yazdani (2021). Highly Improved Supercapacitance Properties of MnFe2O4 Nanoparticles by MoS2 Nanosheets. Scientific Reports, 11(1); 8378

Sharifianjazi, F., M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, and M. Shahedi Asl (2020). Magnetic CoFe2O Nanoparticles Doped with Metal Ions: A Review. Ceramics International, 46(11); 18391–18412

Shayestefar, M., A. Mashreghi, S. Hasani, and M. Taghi Rezvan (2022). Optimization of the Structural and Magnetic Properties of MnFe2O4 Doped by Zn and Dy Using Taguchi Method. Journal of Magnetism and Magnetic Materials, 541; 168390

Sukmarani, G., R. Kusumaningrum, A. Noviyanto, F. Fauzi, A. M. Habieb, M. I. Amal, and N. T. Rochman (2020). Synthesis of Manganese Ferrite from Manganese Ore Prepared by Mechanical Milling and Its Application as an Inorganic Heat-Resistant Pigment. Journal of Materials Research and Technology, 9(4); 8497–8506

Thy, L. T. M., N. H. T. My, H. H. P. Tuong, C. V. Chi, T. H. Tu, H. K. P. Ha, H. M. Nam, M. T. Phong, and N. H. Hieu (2020). Synthesis and Adsorption Ability of Manganese Ferrite/Graphene Oxide Nanocomposites for Arsenic(V) Removal from Water. Vietnam Journal of Chemistry, 58(3); 287–291

Westerstrand, B., P. Nordblad, and L. Nordborg (1975). The Magnetocrystalline Anisotropy Constants of Iron and Iron-Silicon Alloys. Physica Scripta, 11(6); 383

Authors

Martha Rianna
martharianna@usu.ac.id (Primary Contact)
Muhammad Khalid Hussain
Timbangen Sembiring
Herwati Permata Indah Raja Guk-Guk
Kurnia Jesiska Sitorus
Eko Arief Setiadi
Anggito P. Tetuko
Perdamean Sebayang
Rianna, M., Hussain, M. K., Sembiring, T., Guk-Guk, H. P. I. R., Sitorus, K. J., Setiadi, E. A., Tetuko, . A. P. ., & Sebayang, P. (2025). Micro-Magnetic Activity of the Fabricated MnFe2O4 via Co-Precipitation from Natural Iron Sand. Science and Technology Indonesia, 10(1), 221–227. https://doi.org/10.26554/sti.2025.10.1.221-227

Article Details