Study of Porosity and Mechanical-Elastic Properties of the Potential Underground CO2 Storage in Un-Mined Coal Seams from Well-log Data, South Sumatra Basin, Indonesia

Handoyo Handoyo, Asido Saputra Sigalingging, Edlyn Yoadan Nathania, Dimas Astomo, Ramon Carbonell, Sondang Samosir

Abstract

In CO2 storage technology, particularly in coal seams, necessitates specialized research into numerous critical factors that are equivalent to coal seam characteristics, including porosity, permeability, rock strength (UCS: uniaxial compressive strength), Poisson ratio, and brittleness. Rock properties of the coal seam are responsible for the CO2 storage capacity. In this study, we have core samples from the borehole and employed four well-logs (within and area ∼ 1000 m × 875 m) that drilled in the coal mining project located in South Sumatra Basin, Indonesia. The goal of this study is to describe the coal seam C strata in the sub-surface that have the potential to be utilized for underground CO2 storage. In this study, we identified coal seams C from low density and gamma rays from log response data. Then, we predict porosity values from data density, velocity (Vp andVs), UCS values, and BI using petrophysical and rock physics approaches. The result of this study shows that the distribution of top depth coal seam C varies in depth 19 to 225 m with the porosity 0.086-0.138. The value of UCS 1150 1299 Pa and brittleness index 0.531-0.569 that are associated with a characteristic coal with low to medium strength and medium brittleness. The results of this preliminary analysis revealed that the coal seam layer in this region has a high potential for CO2 storage in Sumatra, Indonesia.

References

Adiwidjaja, P. and G. L. Decoster (1973). Pre-Tertiary Paleotopography and Related Sedimentation in South Sumatra. Indonesian Petroleum Association; 89–103

Alberty, M. (1992). ME 10: Development Geology Reference Manual, chapter Standard Interpretation: Part 4. Wireline Methods. American Association of Petroleum Geologists (AAPG), pages 180–185

Aligholi, S., G. R. Lashkaripour, and M. Ghafoori (2017). Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties. Rock Mechanics and Rock Engineering, 50; 45–65

Amier, R. I. (1991). Coals, Source Rocks and Hydrocarbons in the South Palembang Sub-Basin, South Sumatra, Indonesia. Master’s thesis, University of Wollongong

Aydin, G., I. Karakurt, and K. Aydiner (2010). Evaluation of Geologic Storage Options of CO2: Applicability, Cost, Storage Capacity and Safety. Energy Policy, 38(9); 5072–5080

Bishop, M. G. (2001). South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System. US Geological Survey, Denver, Colorado, USA

Bohnsack, D., M. Potten, D. Pfrang, P. Wolpert, and K. Zosseder (2020). Porosity-Permeability Relationship Derived from Upper Jurassic Carbonate Rock Cores to Assess the Regional Hydraulic Matrix Properties of the Malm Reservoir in the South German Molasse Basin. Geothermal Energy, 8; 1–47

Castagna, J. P., M. L. Batzle, T. K. Kan, and M. M. Backus (1993). Rock Physics-The Link Between Rock Properties and AVO Response. Offset-Dependent Reflectivity-Theory and Practice of AVO Analysis: SEG, 8; 135–171

Chakravarty, S., K. Chakravarty, V. Mishra, S. Chakladar, A. Mohanty, and M. Sharma (2020). Characterization of Chemical Structure with Relative Density of Three Different Ranks of Coal from India. Natural Resources Research, 29; 3121–3136

Christoffel, D. A. and J. R. Kayal (1989). Coal Quality from Geophysical Logs: Southland Lignite Region, New Zealand. The Log Analyst, 30(05)

Friederich, M. C., T. A. Moore, and R. M. Flores (2016). A Regional Review and New Insights into SE Asian Cenozoic Coal-Bearing Sediments: Why Does Indonesia Have Such Extensive Coal Deposits? International Journal of Coal Geology, 166; 2–35

Gan, H., S. P. Nandi, and P. L. Walker Jr (1972). Nature of the Porosity in American Coals. Fuel, 51(4); 272–277

Gardner, G. H. F., L. W. Gardner, and A. Gregory (1974). Formation Velocity and Density—The Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6); 770–780

Ghosh, S., R. Chatterjee, S. Paul, and P. Shanker (2014). Designing of Plug-In for Estimation of Coal Proximate Parameters Using Statistical Analysis and Coal Seam Correlation. Fuel, 134; 63–73

Gibbins, J. and H. Chalmers (2008). Carbon Capture and Storage. Energy Policy, 36(12); 4317–4322

Gonzatti, C., L. Zorzi, I. M. Agostini, J. A. Fiorentini, A. P. Viero, and R. P. Philipp (2014). In Situ Strength of Coal Bed Based on the Size Effect Study on the Uniaxial Compressive Strength. International Journal of Mining Science and Technology, 24(6); 747–754

Grieser, B. and J. Bray (2007). Identification of Production Potential in Unconventional Reservoirs. SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium; SPE–106623

Koesoemadinata, R. P. (2002). Outline of Tertiary Coal Basins of Indonesia. Berita Sedimentologi, 17(1); 2–13

Kokowski, J., Z. Szreder, and E. Pilecka (2019). Reference P-Wave Velocity in Coal Seams at Great Depths in Jastrzebie Coal Mine. E3S Web of Conferences, 133; 01011

Kuang, N. J., J. P. Zhou, X. F. Xian, C. P. Zhang, K. Yang, and Z. Q. Dong (2023). Geomechanical Risk and Mechanism Analysis of CO2 Sequestration in Unconventional Coal Seams and Shale Gas Reservoirs. Rock Mechanics Bulletin, 2(4); 100079

Lepore, S. and R. Ghose (2015). Carbon Capture and Storage Reservoir Properties from Poroelastic Inversion: A Numerical Evaluation. Journal of Applied Geophysics, 122; 181–191

Li, X. and Z. M. Fang (2014). Current Status and Technical Challenges of CO2 Storage in Coal Seams and Enhanced Coalbed Methane Recovery: An Overview. International Journal of Coal Science & Technology, 1(1); 93–102

Lu, Y., C. Li, Z. He, M. Gao, R. Zhang, C. Li, and H. Xie (2020). Variations in the Physical and Mechanical Properties of Rocks from Different Depths in the Songliao Basin under Uniaxial Compression Conditions. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6; 1–14

Mariucci, M. T., P. Montone, and P. Balossino (2024). Comparative Analysis of Bulk and Velocity-Derived Density Data in Deep Wells in the Adriatic Region (Italy). Annals Of Geophysics, 67(2); GT212–GT212

Masoudian, M. S., D. W. Airey, and A. El-Zein (2014). Experimental Investigations on the Effect of CO2 on Mechanics of Coal. International Journal of Coal Geology, 128; 12–23

McDowell, P. W. (2002). Geophysics In Engineering Investigations. The Geological Society

Muksin, N., D. Yusmen, R. Waren, A. Werdaya, and D. Djuhaeni (2012). Regional Depositional Environment Model of Muara Enim Formation and Its Significant Implication for CBM Prospectivity in South Sumatra Basin, Indonesia. American Association of Petroleum Geologists, Search and Discovery Article; 80272

Mwakipunda, G. C., Y. Wang, M. M. Mgimba, M. R. Ngata, J. Alhassan, C. N. Mkono, and L. Yu (2023). Recent Advances in Carbon Dioxide Sequestration in Deep Unmineable Coal Seams Using CO2-Ecbm Technology: Experimental Studies, Simulation, and Field Applications. Energy & Fuels, 37(22); 17161–17186

Pan, J., Z. Meng, Q. Hou, Y. Ju, and Y. Cao (2013). Coal Strength and Young’s Modulus Related to Coal Rank, Compressional Velocity and Maceral Composition. Journal of Structural Geology, 54; 129–135

Pan, R., H. Gao, K. Lei, and Z. Zhu (2015). Quantitative Prediction Of Coalbed Gas Content Based On Seismic Multiple-Attribute Analyses. Journal Of Engineering & Technological Sciences, 47(4).

Perera, M. S. A. and P. G. Ranjith (2012). Carbon Dioxide Sequestration Effects on Coal’s Hydro-Mechanical Properties: A Review. International Journal of Energy Research, 36(10); 1015–1031.

Perez Altamar, R. and K. Marfurt (2014). Mineralogy-Based Brittleness Prediction From Surface Seismic Data: Application To The Barnett Shale. Interpretation, 2(4); T255–T271.

Ramm, M., A. W. Forsberg, and J. S. Jahren (1997). Porosity–Depth Trends In Deeply Buried Upper Jurassic Reservoirs In The Norwegian Central Graben: An Example Of Porosity Preservation Beneath The Normal Economic Basement By Grain-Coating Microquartz. AAPG Memoir 69: Reservoir Quality Prediction in Sandstones and Carbonates; 177–199.

Ravagnani, A. G., E. L. Ligero, and S. B. Suslick (2009). CO2 Sequestration through Enhanced Oil Recovery in a Mature Oil Field. Journal of Petroleum Science and Engineering, 65(3-4); 129–138.

Raymer, L. L., E. R. Hunt, and J. S. Gardner (1980). An Improved Sonic Transit Time-to-Porosity Transform. SPWLA Annual Logging Symposium; SPWLA–1980.

Sampath, K. H. S. M., M. S. A. Perera, P. G. Ranjith, and S. K. Matthai (2019). CO2 Interaction Induced Mechanical Characteristics Alterations in Coal: A Review. International Journal of Coal Geology, 204; 113–129.

Sander, R. (2014). The Economics of CO2 Storage in Coal Seams with Enhanced Coalbed Methane Recovery (CO2-ECBM) - Development of Screening Criteria. Ph.D. thesis, UNSW Sydney.

Shi, J. Q. and S. Durucan (2005). CO2 Storage in Deep Unminable Coal Seams. Oil & Gas Science and Technology, 60(3); 547–558.

Speight, J. G. (2015). Handbook of Coal Analysis. John Wiley & Sons.

Tarsis, A. D. (2001). Penyelidikan Batubara Bersistem Dalam Cekungan Sumatera Selatan Di Daerah Benakat Minyak Dan Sekitarnya, Kabupaten Muara Enim Propinsi Sumatera Selatan. Technical report, Sub Direktorat Batubara, Jakarta.

Tenthorey, E., T. Richard, and D. N. Dewhurst (2019). A Continuous, Proxy-Based Rock Mechanical Approach for Developing Mechanical Frameworks at CO2 Storage Sites. International Journal of Greenhouse Gas Control, 85; 36–45.

Ünalan, G. (2010). Kömür Jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü.

Walker Jr, P. L., S. K. Verma, J. Rivera-Utrilla, and A. Davis (1988). Densities, Porosities and Surface Areas of Coal Macerals as Measured by Their Interaction with Gases, Vapours and Liquids. Fuel, 67(12); 1615–1623.

Wang, D., H. Hu, T. Wang, T. Tang, W. Li, G. Zhu, and X. Chen (2024). Difference Between of Coal and Shale Pore Structural Characters Based on Gas Adsorption Experiment and Multifractal Analysis. Fuel, 371; 132044.

Wang, L. L., M. Vandamme, J. M. Pereira, P. Dangla, and N. Espinoza (2018). Permeability Changes in Coal Seams: The Role of Anisotropy. International Journal of Coal Geology, 199; 52–64.

Warren, J. (2002). Well Logging. API, USA.

Wu, M., Y. Qin, Y. Zhang, S. Zhu, G. Zhang, F. Lan, and Y. Qin (2023). Influence Factors and Feasibility Evaluation on Geological Sequestration of CO2 in Coal Seams: A Review. ACS Omega, 8(19); 16561–16569.

Yan, H., J. Zhang, S. S. Rahman, N. Zhou, and Y. Suo (2020). Predicting Permeability Changes with Injecting CO2 in Coal Seams During CO2 Geological Sequestration: A Comparative Study Among Six SVM-Based Hybrid Models. Science of the Total Environment, 705; 135941.

Zanetta, E. V., H. Handoyo, F. Fatkhan, A. Laesanpura, and H. Y. Hutami (2021). Analisis Parameter Elastisitas untuk Interpretasi Litologi dan Fluida Pori Reservoir Batupasir Formasi Intra Gumai Cekungan Sumatera Selatan. Jurnal Geofisika, 19(2); 45–50.

Zhang, G., P. G. Ranjith, Z. Li, M. Gao, and Z. Ma (2021). Long-Term Effects of CO2-Water-Coal Interactions on Structural and Mechanical Changes of Bituminous Coal. Journal of Petroleum Science and Engineering, 207; 109093.

Zhou, B. and G. O’Brien (2016). Improving Coal Quality Estimation Through Multiple Geophysical Log Analysis. International Journal of Coal Geology, 167; 75–92.

Zou, G., Q. Zhang, S. Peng, J. She, D. Teng, C. Jin, and Y. Che (2022). Influence of Geological Factors on Coal Permeability in the Sihe Coal Mine. International Journal of Coal Science & Technology, 9(1); 6.

Authors

Handoyo Handoyo
handoyo.geoph@tg.itera.ac.id (Primary Contact)
Asido Saputra Sigalingging
Edlyn Yoadan Nathania
Dimas Astomo
Ramon Carbonell
Sondang Samosir
Handoyo, H., Sigalingging, . A. S. ., Nathania, . E. Y. ., Astomo, D. ., Carbonell, R. ., & Samosir, . S. . (2025). Study of Porosity and Mechanical-Elastic Properties of the Potential Underground CO2 Storage in Un-Mined Coal Seams from Well-log Data, South Sumatra Basin, Indonesia. Science and Technology Indonesia, 10(1), 238–249. https://doi.org/10.26554/sti.2025.10.1.238-249

Article Details