The Locating Chromatic Number of the Cyclic Chain Graph

Latifa Azhar Abel, Des Welyyanti, Lyra Yulianti, Dony Permana

Abstract

The locating chromatic number of graph G (χL(G)) combines the idea of the partition dimension and the chromatic number by considering the locations of the vertices of graph G. Let (Cni, m) be a cyclic chain graph, namely a group of blocks in the form of a cycle graph Cn1(1), Cn2(2), ···, Cni(i). The ni is the number of vertices on the i-th cycle, and m is the number of cycles, for ni ≥ 3, 1 ≤ im, and m ≥ 2, and the vertex vi,ni/2⌉+1 in Cni(i) is identified with the vertex vi,ni/2⌉+1 in Cni+1(i+1). In this research, we determine χL(Cni, m) for ni ≥ 3, 1 ≤ im, and m ≥ 2.

References

Alcon, L., M. Gutierrez, C. Hernando, M. Mora, and I. M. Pelayo (2020). The Neighbor-Locating-Chromatic Number of Pseudotrees. arXiv; 11937

Aouf, H., H. Al-Ezeh, and M. Ghanem (2024). Locating Chromatic Number of Middle Graph of Path, Cycle, Star, Wheel, Gear and Helm Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 119; 335–345

Asmiati and E. T. Baskoro (2012). Characterizing All Graphs Containing Cycles with Locating-Chromatic Number 3. In AIP Conference Proceedings, volume 1451. pages 351–357

Asmiati, I. K. Sadha Gunce Yana, and L. Yulianti (2018). On the Locating Chromatic Number of Certain Barbell Graphs. International Journal of Mathematics and Mathematical Sciences, 1; 5327504

Asmiati, Wamiliana, Devriyadi, and L. Yulianti (2017). On Some Petersen Graphs Having Locating Chromatic Number Four Or Five. Far East Journal of Mathematical Sciences (FJMS), 102(4); 769–778

Assiyatun, H., D. K. Syofyan, and E. T. Baskoro (2020). Calculating an Upper Bound of the Locating-Chromatic Number of Trees. Theoretical Computer Science, 806; 305–309

Baskoro, E. T. and D. I. D. Primaskun (2021). Improved Algorithm for the Locating-Chromatic Number of Trees. Theoretical Computer Science, 856; 165–168

Chartrand, G., D. Erwin, A. H. Michael, P. J. Slater, and P. Zhang (2002). The Locating-Chromatic Number of a Graph. Bulletin of the ICA, 36; 89–101. A

Damayanti, M., Asmiati, Fitriani, M. Ansori, and A. Faradilla (2021). The Locating Chromatic Number of SomeModified Path with Cycle Having Locating Number Four. In Journal of Physics: Conference Series, volume 1751. pages 1–5

Furuya, M. and N. Matsumoto (2019). Upper Bounds on the Locating Chromatic Number of Trees. Discrete Applied Mathematics, 257; 338–341

Ghanem, M., H. Al-Ezeh, and A. Dabbour (2019). Locating ChromaticNumber of Powers of Paths and Cycles. Symmetry, 11(3); 389

Haryeni, D. O. and E. T. Baskoro (2022). Graphs with Partition Dimension 3 and Locating-Chromatic Number 4. In International MIPAnet Conference on Science and Mathematics (IMC-SciMath). Scitepress, pages 14–19

Inayah, N., W. Aribowo, and W. M. M. Yahya (2021). The Locating Chromatic Number of Book Graph. Journal of Mathematics, 2021(1); 3716361

Irawan, A., Asmiati, L. Zakaria, and K. Muludi (2021). The Locating-Chromatic Number of Origami Graphs. Algorithms, 14; 167

Irawan, A. and A. Istiani (2024). The Locating Chromatic Number for the New Operation on Generalized Petersen Graphs N_P (m, 1). Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 21(1); 89–96

Prawinasti, K., M. Ansori, Asmiati, Notiragayu, and A. R. G. N. Rofi (2021). The Locating Chromatic Number for Split Graph of Cycle. In Journal of Physics: Conference Series, volume 1751. IOP Publishing Ltd

Purwasih, I. A., E. T. Baskoro, H. Assiyatun, D. Suprijanto, and M. Bača (2017). The Locating-ChromaticNumber for Halin Graphs. Communications in Combinatorics and Optimization, 2(1); 1–9

Putri, Y. S., L. Yulianti, and Yanita (2021). On the Locating Chromatic Number of Some Buckminsterfullerene-Type Graphs. Journal of Physics: Conference Series, 1836(1); 012005

Sakri, R. and M. Abbas (2024). The Locating Chromatic Number of Generalized Petersen GraphsWith Small Order. Examples and Counterexamples, 5; 100–141

Sudarsana, I.W., F. Susanto, and S. Musdalifah (2022). The Locating Chromatic Number for m-Shadow of a Connected Graph. Electronic Journal of Graph Theory and Applications, 10(2); 589–601

Syofyan, D. K., S.W. Saputro, E. T. Baskoro, and I. A. Purwasih (2024). On the Locating-Chromatic Number of Corona Product of Graphs. ArXiv; 1–11

Tri Baskoro, E. (2013). Characterizing All Trees With Locating-Chromatic Number 3. Electronic Journal of Graph Theory and Applications, 1(2); 109–117

Welyyanti, D., E. T. Baskoro, and R. Simajuntak (2017). On the Locating-Chromatic Number for GraphsWith Two Homogenous Components. In Journal of Physics: Conference Series, volume 893. page 012040

Welyyanti, D., R. Lestari, and S. Rahma Putri (2019). The Locating Chromatic Number of Disconnected GraphWith Path and Cycle Graph as Its Components. In Journal of Physics: Conference Series, volume 1317. Institute of Physics Publishing, page 012021

Welyyanti, D., S. R. Putri, M. Azhari, and R. Lestari (2021). On Locating Chromatic Number of Disconnected Graph With Path, Cycle, Stars or Double Stars as Its Components. In Journal of Physics: Conference Series, volume 1742. page 012020

Authors

Latifa Azhar Abel
Des Welyyanti
wely@sci.unand.ac.id (Primary Contact)
Lyra Yulianti
Dony Permana
Abel, L. A., Welyyanti, D., Yulianti, L., & Permana, D. . (2025). The Locating Chromatic Number of the Cyclic Chain Graph. Science and Technology Indonesia, 10(3), 958–962. https://doi.org/10.26554/sti.2025.10.3.958-962

Article Details