Influence of Mg Incorporation on the Structural and Electrochemical Properties of LiMn1-xMgxO2 Cathode Material for Lithium-Ion Batteries
Abstract
In this study, the urea route technique was used to synthesize LiMn1-xMgxO2 compounds with (x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, and 0.75 wt.%) as cathode active materials for lithium-ion batteries. All prepared samples underwent structural and morphological analysis. The X-ray diffraction (XRD) results showed a single-phase crystal structure for the synthesized nanoparticles. The crystalline size (D111) of the produced particles was calculated using Debye-Scherrer’s equation, and the results indicated only a slight change in particle size upon substitution of magnesium ions. Fourier transform infrared spectroscopy (FTIR) analysis revealed several vibrational modes, including (O-H and C=O). Field emission scanning electron microscopy (FESEM) images also revealed that the nanoparticles were cubic, with little variation in size distribution. The synthesized LiMn1-xMgxO2 was further characterized by energy dispersive X-ray (EDX) spectroscopy. The findings confirmed the presence of magnesium (Mg), manganese (Mn), and oxygen (O). Electrochemical testing was conducted only on samples of LiMn1-xMgxO2 (x = 0, 0.125, and 0.75 wt.%). Electrochemical experiments showed that LiMn1-xMgxO2 (x = 0.125 and 0.75 wt.%) exhibited greater charge and discharge capacities than the LiMnO2 electrode. These results were consistent with the findings from electrochemical impedance spectroscopy (EIS). Overall, the electrochemical experiments demonstrated that LiMn1-xMgxO2 (x = 0.125 and 0.75 wt.%) performed better than LiMnO2.
References
Abdullah, M. Z., M. H. Al-Timimi, W. H. Albanda, M. Dumitru, A. E. Balan, C. Ceaus, and I. Stamatin (2019a). Structural and Electrochemical Properties of P3Na0.67Mn0.3Co0.7O2 Nanostructures Prepared by Citric Urea Self-Combustion Route as Cathode for Sodium Ion Battery. Digest Journal of Nanomaterials and Biostructures, 14(4); 1179–1193.
Abdullah, M. Z., H. M. Hasan, M. H. Al-Timimi, W. H. Albanda, M. K. Alhussainy, and M. Dumitru (2019b). Preparation and Characterization of Carbon Doped Lithium Iron Phosphate Composite as Cathode for Rechargeable Battery. Journal of Ovonic Research, 15(3); 199–204.
Abou-Rjeily, J., I. Bezza, N. A. Laziz, C. Autret-Lambert, M. T. Sougrati, and F. Ghamouss (2020). High-Rate Cyclability and Stability of LiMn2O4 Cathode Materials for Lithium Ion Batteries from Low-Cost Natural ???? MnO2. Energy Storage Materials, 26; 423–432.
Almafie, M. R., R. Dani, R. Riyanto, L. Marlina, J. Jauhari, and I. Sriyanti (2024). Preparation of PAN/PVDF Nanofiber Mats Loaded with Coconut Shell Activated Carbon and Silicon Dioxide for Lithium-Ion Battery Anodes. Science and Technology Indonesia, 9(2); 427–447.
Banerjee, S., P. C. Chakraborti, and S. K. Saha (2019). An Automated Methodology for Grain Segmentation and Grain Size Measurement from Optical Micrographs. Measurement, 140; 142–150.
Chidouh, A., T. Tahraoui, and B. Barhouchi (2023). Co-precipitation Synthesis and Antimicrobial Effect Study of Europium Doped Spinel Manganese Ferrites Nanoparticles (MnEu0.1Fe1.9O4NPs). Science and Technology Indonesia, 8(3); 494–500.
Croy, J. R., K. G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D. W. Dees, and M. M. Thackeray (2013). Examining Hysteresis in Composite xLi2MnO3·(1–x)LiMO2 Cathode Structures. The Journal of Physical Chemistry C, 117(13); 6525–6536.
Croy, J. R., D. Kim, M. Balasubramanian, K. Gallagher, S. H. Kang, and M. M. Thackeray (2012). Countering the Voltage Decay in High Capacity xLi2MnO3·(1–x)LiMO2 Electrodes (M = Mn, Ni, Co) for Li+-Ion Batteries. Journal of the Electrochemical Society, 159(6); A781.
Dippong, T., I. G. Deac, O. Cadar, E. A. Levei, L. Diamandescu, and G. Borodi (2019). Effect of Zn Content on Structural, Morphological and Magnetic Behavior of ZnxCo1–xFe2O4/SiO2 Nanocomposites. Journal of Alloys and Compounds, 792; 432–443.
Etacheri, V., R. Roshan, and V. Kumar (2012). Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis. ACS Applied Materials & Interfaces, 4(5); 2717–2725.
Feng, Q., Y. Miyai, H. Kanoh, and K. Ooi (1993). Li+ and Mg2+ Extraction and Li+ Insertion Reactions with LiMg0.5Mn1.5O4 Spinel in the Aqueous Phase. Chemistry of Materials, 5(3); 311–316.
Goodenough, J. B. (2013). Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research, 46(5); 1053–1061.
Gu, M., I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, and J.-G. Zhang (2013). Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano, 7(1); 760–767.
Hakim, M. S. and H. Pangestu (2022). Preparation and Application of Nickel Electroplating on Copper (Ni/EC) Electrode for Glucose Detection. Science and Technology Indonesia, 7(2); 208–212.
He, F., X. Wang, C. Du, A. P. Baker, J. Wu, and X. Zhang (2015). The Effect of Samaria Doped Ceria Coating on the Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material for Lithium-Ion Battery. Electrochimica Acta, 153; 484–491.
Homad, H., N. Ali, O. Al-Jubouri, M. Al-Timimi, and B. Abbas (2024). Synthesis of LiCo1–xNixO2 Nanomaterial by Hydrothermal Method as Cathode for Lithium Ion Battery. EUREKA: Physics and Engineering, (4); 160–172.
Homada, H. T., N. M. Alia, O. A. Al-Jubourib, and M. H. Al-Timimia (2023). Synthesis and Characterization of LiCo1–xNixO2 Nanoparticles by Urea Route as Cathode for Lithium-Ion Battery. Journal of Ovonic Research, 19(6); 783–791.
Kerista Tarigan, E. A. M. S. F. J. P. Y. G. O. M., Rikson Siburian (2024). Fabrication and Optimization of Primary Batteries Using Ni/Graphene Nanosheet Electrodes. Science and Technology Indonesia, 9(2); 413–426.
Kissinger, P. T. and W. R. Heineman (1983). Cyclic Voltammetry. Journal of Chemical Education, 60(9); 702.
Kong, J.-Z., X.-Y. Yang, H.-F. Zhai, C. Ren, H. Li, J.-X. Li, Z. Tang, and F. Zhou (2013). Synthesis and Electrochemical Properties of Li-Excess Li1+x[Ni0.5Co0.2Mn0.3]O2 Cathode Materials Using Ammonia-Free Chelating Agent. Journal of Alloys and Compounds, 580; 491–496.
Lazanas, A. C. and M. I. Prodromidis (2023). Electrochemical Impedance Spectroscopy - A Tutorial. ACS Measurement Science Au, 3(3); 162–193.
Li, G., X. Feng, Y. Ding, S. Ye, and X. Gao (2012). AlF3-Coated Li(Li0.17Ni0.25Mn0.58)O2 as Cathode Material for Li-Ion Batteries. Electrochimica Acta, 78; 308–315.
Li, G., Y. Yu, T. Feng, M. Shao, C. Su, and J. Guo (2018). Study on Electrochemical Performance of LiMg0.06Mn1.94O4 Synthesized by Solid-State Combustion Method. International Journal of Electrochemical Science, 13(2); 1495–1504.
Li, N., R. An, Y. Su, F. Wu, L. Bao, L. Chen, Y. Zheng, H. Shou, and S. Chen (2013). The Role of Yttrium Content in Improving Electrochemical Performance of Layered Lithium-Rich Cathode Materials for Li-Ion Batteries. Journal of Materials Chemistry A, 1(34); 9760–9767
Llusco, A., M. Grageda, and S. Ushak (2020). Kinetic and Thermodynamic Studies on Synthesis of Mg-Doped LiMn2O4 Nanoparticles. Nanomaterials, 10(7); 1409
Ma, J., T. Liu, J. Ma, C. Zhang, and J. Yang (2024). Progress, Challenge, and Prospect of LiMnO2: An Adventure Toward High-Energy and Low-Cost Li-Ion Batteries. Advanced Science, 11(2); 2304938
Ma, S., X. Hou, Z. Lin, Y. Huang, Y. Gao, S. Hu, and J. Shen (2016). One-Pot Facile Co-Precipitation Synthesis of the Layered Li1+x(Mn0.6Ni0.2Co0.2)1–xO2 as Cathode Materials with Outstanding Performance for Lithium-Ion Batteries. Journal of Solid State Electrochemistry, 20; 95–103
Martha, S. K., J. Nanda, G. M. Veith, and N. J. Dudney (2012). Electrochemical and Rate Performance Study of High-Voltage Lithium-Rich Composition: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Power Sources, 199; 220–226
Mohammad Shafiee, M. R., M. Kargar, and M. Ghashang (2018). Characterization and Low-Cost, Green Synthesis of Zn2+ Doped MgO Nanoparticles. Green Processing and Synthesis, 7(3); 248–254
Nagappa, B. and G. Chandrappa (2007). Mesoporous Nanocrystalline Magnesium Oxide for Environmental Remediation. Microporous and Mesoporous Materials, 106(1–3); 212–218
Ou, J., L. Yang, and X. Xi (2016). Flour-Assisted Simple Fabrication of LiCoO2 with Enhanced Electrochemical Performances for Lithium Ion Batteries. Journal of Materials Science: Materials in Electronics, 27; 9008–9014
Parajuli, D. and N. Murali (2024). Mg2+ Substitution Effect on the Electrochemical Performance of LiNi0.8–xMgxCo0.1Mn0.1O2 (x = 0.00–0.05) Cathode Materials for LIBs. AIP Advances, 14(8)
Ren, Y., J. Zhang, Y. Liu, H. Li, H. Wei, B. Li, and X. Wang (2012). Synthesis and Superior Anode Performances of TiO2–Carbon–rGO Composites in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 4(9); 4776–4780
Rohendi, D., N. F. Sya’baniah, E. H. Majlan, N. Syarif, A. Rachmat, D. H. Yulianti, and R. W. H. Erliana (2023). The Electrochemical Conversion of CO2 into Methanol with KHCO3 Electrolyte Using Membrane Electrode Assembly (MEA). Science and Technology Indonesia, 8(4); 632–639
Scrosati, B. and J. Garche (2010). Lithium Batteries: Status, Prospects and Future. Journal of Power Sources, 195(9); 2419–2430
Shim, J.-H., S. Lee, and S. S. Park (2014). Effects of MgO Coating on the Structural and Electrochemical Characteristics of LiCoO2 as Cathode Materials for Lithium Ion Battery. Chemistry of Materials, 26(8); 2537–2543
Singh, P., A. Sil, M. Nath, and S. Ray (2010). Synthesis and Characterisation of Li[Mn2–xMgx]O4 (x = 0.0–0.3) Prepared by Sol-Gel Synthesis. Ceramics-Silikáty, 54(1); 38–46
Sun, Y.-K., S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine (2009). High-Energy Cathode Material for Long-Life and Safe Lithium Batteries. Nature Materials, 8(4); 320–324
van Bommel, A., L. Krause, and J. Dahn (2011). Investigation of the Irreversible Capacity Loss in the Lithium-Rich Oxide Li[Li1/5Ni1/5Mn3/5]O2. Journal of the Electrochemical Society, 158(6); A731
Wang, Y. X., K. H. Shang, W. He, X. P. Ai, Y. L. Cao, and H. X. Yang (2015). Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability. ACS Applied Materials & Interfaces, 7(23); 13014–13021
Wu, F., J. Tian, Y. Su, Y. Guan, Y. Jin, Z. Wang, T. He, L. Bao, and S. Chen (2014). Lithium-Active Molybdenum Trioxide Coated LiNi0.5Co0.2Mn0.3O2 Cathode Material with Enhanced Electrochemical Properties for Lithium-Ion Batteries. Journal of Power Sources, 269; 747–754
Xiang, M., C.-W. Su, L. Feng, M. Yuan, and J. Guo (2014). Rapid Synthesis of High-Cycling Performance LiMgxMn2–xO4 (x ≤ 0.20) Cathode Materials by a Low-Temperature Solid-State Combustion Method. Electrochimica Acta, 125; 524–529
Yi, Z. (2016). Rheological Phase Reaction Synthesis of Co-Doped LiMn2O4 Octahedral Particles. Journal of Materials Science: Materials in Electronics, 27; 10347–10352
Yuan, L.-X., Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough (2011). Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy & Environmental Science, 4(2); 269–284
Zhao, H., F. Li, X. Liu, W. Xiong, B. Chen, H. Shao, D. Que, Z. Zhang, and Y. Wu (2015). A Simple, Low-Cost and Eco-Friendly Approach to Synthesize Single-Crystalline LiMn2O4 Nanorods with High Electrochemical Performance for Lithium-Ion Batteries. Electrochimica Acta, 166; 124–133
Zhu, Z. and L. Zhu (2014). Synthesis of Layered Cathode Material 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 by an Improved Co-Precipitation Method for Lithium-Ion Battery. Journal of Power Sources, 256; 178–182
Zipare, K., S. Bandgar, and G. Shahane (2018). Effect of Dy-Substitution on Structural and Magnetic Properties of MnZn Ferrite Nanoparticles. Journal of Rare Earths, 36(1); 86–94
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.