Transforming Discarded Mature Coconut Water into Carboxymethyl Cellulose as A Precursor Material for Bioplastics

Khusna Santika Rahmasari, Achmad Vandian Nur, Eka Anydia Putri, Vanesa Maharani, Achmad Ridlo, Bayu Ishartono

Abstract

(DMCW) mixture into the market’s drainage ditches after opening mature coconuts, resulting in soil contamination and odor due to acetic acid produced during fermentation by soil bacteria. This study aimed to minimize soil pollution caused by these activities through converting DMCW into versatile biopolymers such as carboxymethyl cellulose (CMC). The synthesis was initiated through the fermentation of DMCW into bacterial cellulose (BC) in the form of nata de coco (NdC), subsequently undergoing alkalization and carboxymethylation to produce CMC. The efficacy of the synthesis process from DMCW to CMC was identified via spectroscopy, thermal, and physicochemical analysis. The characterization results demonstrated that NdC-based CMC and commercial CMC exhibited analogous functional groups, diffraction patterns, thermal degradation behaviors, and physicochemical properties. NdCbased CMC revealed characteristics like water solubility, elevated molecular weight, and high viscosity, despite its purity being spproximately 83.3%. Notwithstanding its rigidity, lack of transparency, and water solubility, this NdC-based CMC can be solvent cast into bioplastics and degraded in soil in four days. In the future, CMC-based bioplastics, enhanced through advanced treatments, will be expected as precursors for the creation of sustainable food packaging materials

References

Aba, R. P. M., M. B. Z. Luna, J. C. Villasis, and A. A. A. Ching (2024). Characterization of Mature Coconut (Cocos nucifera L.) Water from Different Varieties. Food and Humanity, 2; 100248.

Adinugraha, M. P., D. W. Marseno, and Haryadi (2005). Synthesis and Characterization of Sodium Carboxymethylcellulose from Cavendish Banana Pseudo Stem (Musa cavendishii Lambert). Carbohydrate Polymers, 62(2); 164–169.

Alabi, F. M., L. Lajide, O. O. Ajayi, A. O. Adebayo, S. Emmanuel, and A. E. Fadeyi (2020). Synthesis and Characterization of Carboxymethyl Cellulose from Musa paradisiaca and Tithonia diversifolia. African Journal of Pure and Applied Chemistry, 14(1); 9–23.

Andrade, M. S., O. H. Ishikawa, R. S. Costa, M. V. S. Seixas, R. C. L. B. Rodrigues, and E. A. B. Moura (2022). Development of Sustainable Food Packaging Material Based on Biodegradable Polymer Reinforced with Cellulose Nanocrystals. Food Packaging and Shelf Life, 31; 100807.

Detudom, R., P. Deetae, H. Wei, H. Boran, S. Chen, S. Siriamornpun, and C. Prakitchaiwattana (2023). Dynamic Changes in Physicochemical and Microbiological Qualities of Coconut Water During Postharvest Storage Under Different Conditions. Horticulturae, 9(12); 1284.

Du, H., X. Sun, X. Chong, M. Yang, Z. Zhu, and Y. Wen (2023). A Review on Smart Active Packaging Systems for Food Preservation: Applications and Future Trends. Trends in Food Science and Technology, 141; 104200.

Duangrin, M., S. Pisutpiched, A. Deenu, and S. Kamthai (2024). Ultrasonic-Assisted Synthesis for the Production of Green and Sustainable Hemp Carboxymethyl Cellulose. International Journal of Biological Macromolecules, 280; 135610.

Ge, Y. and Z. Li (2013). Preparation and Evaluation of Sodium Carboxymethylcellulose from Sugarcane Bagasse for Applications in Coal-Water Slurry. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 50(7); 757–762.

Halib, N., M. C. I. M. Amin, and I. Ahmad (2010). Unique Stimuli Responsive Characteristics of Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite. Journal of Applied Polymer Science, 116(5); 2920–2929.

Joshi, G., S. Naithani, V. K. Varshney, S. S. Bisht, V. Rana, and P. K. Gupta (2015). Synthesis and Characterization of Carboxymethyl Cellulose from Office Waste Paper: A Greener Approach Towards Waste Management. Waste Management, 38(1); 33–40.

Kong, X., Z. Guo, Y. Yao, L. Xia, R. Liu, H. Song, and S. Zhang (2022). Acetic Acid Alters Rhizosphere Microbes and Metabolic Composition to Improve Willows Drought Resistance. Science of the Total Environment, 844; 157132.

Kumar, B., R. Priyadarshi, Sauraj, F. Deeba, A. Kulshreshtha, K. K. Gaikwad, J. Kim, A. Kumar, and Y. S. Negi (2020). Nanoporous Sodium Carboxymethyl Cellulose-g-Poly(Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels, 6(4); 1–11.

Lakshmi, D. S., N. Trivedi, and C. R. K. Reddy (2017). Synthesis and Characterization of Seaweed Cellulose Derived Carboxymethyl Cellulose. Carbohydrate Polymers, 157; 1604–1610.

Luo, H., T. Cui, D. Gan, M. Gama, Q. Zhang, and Y. Wan (2019). Fabrication of a Novel Hierarchical Fibrous Scaffold for Breast Cancer Cell Culture. Polymer Testing, 80; 106107.

Mondal, M. I. H., M. S. Yeasmin, and M. S. Rahman (2015). Preparation of Food Grade Carboxymethyl Cellulose from Corn Husk Agrowaste. International Journal of Biological Macromolecules, 79; 144–150.

Nimeskern, L., H. Martínez Ávila, J. Sundberg, P. Gatenholm, R. Müller, and K. S. Stok (2013). Mechanical Evaluation of Bacterial Nanocellulose as an Implant Material for Ear Cartilage Replacement. Journal of the Mechanical Behavior of Biomedical Materials, 22; 12–21.

Phan, H. T., K. D. Nguyen, H. H. M. Nguyen, N. T. Dao, P. T. K. Le, and H. V. Le (2023). Nata de Coco as an Abundant Bacterial Cellulose Resource to Prepare Aerogels for the Removal of Organic Dyes in Water. Bioresource Technology Reports, 24; 101613.

Rachtanapun, P., P. Jantrawut, W. Klunklin, K. Jantanasakulwong, Y. Phimolsiripol, N. Leksawasdi, P. Seesuriyachan, T. Chaiyaso, C. Insomphun, S. Phongthai, S. R. Sommano, W. Punyodom, A. Reungsang, and T. M. P. Ngo (2021). Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH. Polymers, 13(3); 1–17.

Rahmasari, K. S. and B. Ishartono (2024). Antioxidant Release Profile from Chitosan/k-Carrageenan-Based Polyelectrolyte Complex Films as Active Packaging: A Preliminary Study. Molekul, 19(3); 443–454.

Rahmatullah, R. W. Putri, M. Rendana, U. Waluyo, and T. Andrianto (2022). Effect of Plasticizer and Concentration on Characteristics of Bioplastic Based on Cellulose Acetate from Kapok (Ceiba Pentandra) Fiber. Science and Technology Indonesia, 7(1); 73–83.

Ramakrishnan, R., J. T. Kim, S. Roy, and A. Jayakumar (2024). Recent Advances in Carboxymethyl Cellulose-Based Active and Intelligent Packaging Materials: A Comprehensive Review. International Journal of Biological Macromolecules, 259.

Roslan, N. J., S. H. Jamal, J. I. A. Rashid, M. N. F. Norrrahim, K. K. Ong, and W. M. Z. W. Yunus (2024). Response Surface Methodology for Optimization of Nitrocellulose Preparation from Nata de Coco Bacterial Cellulose for Propellant Formulation. Heliyon, 10(4):e25993.

Saputra, A. H., L. Qadhayna, and A. B. Pitaloka (2014). Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Water Hyacinth Using Ethanol-Isobutyl Alcohol Mixture as the Solvents. International Journal of Chemical Engineering and Applications, 5(1); 36–40.

Shui, T., S. Feng, G. Chen, A. Li, Z. Yuan, H. Shui, T. Kuboki, and C. Xu (2017). Synthesis of Sodium Carboxymethyl Cellulose Using Bleached Crude Cellulose Fractionated from Cornstalk. Biomass and Bioenergy, 105; 51–58.

Singh, R., J. Singh, Sonika, and H. Singh (2022). Green Synthesis of Carboxymethyl Cellulose from Agricultural Waste and Its Characterization. Journal of Physics: Conference Series, 2267(1); 1–18.

Tavares, K. M., A. d. Campos, B. R. Luchesi, A. A. Resende, J. E. d. Oliveira, and J. M. Marconcini (2020). Effect of Carboxymethyl Cellulose Concentration on Mechanical and Water Vapor Barrier Properties of Corn Starch Films. Carbohydrate Polymers, 246; 116521.

Techavuthiporn, C., H. Nimitkeatkai, M. Thammawong, and K. Nakano (2024). A Coating Made from Carboxymethyl Cellulose Derived from Commercial Nata De Coco Reduces Postharvest Changes in ‘Hom Thong’ Banana Fruit During Ambient Storage. Postharvest Biology and Technology, 208; 112650.

Wongvitvichot, W., S. Pithakratanayothin, S. Wongkasemjit, and T. Chaisuwan (2021). Fast and Practical Synthesis of Carboxymethyl Cellulose from Office Paper Waste by Ultrasonic-Assisted Technique at Ambient Temperature. Polymer Degradation and Stability, 184; 109473.

Yaradoddi, J. S., N. R. Banapurmath, S. V. Ganachari, M. E. M. Soudagar, N. M. Mubarak, S. Hallad, S. Hugar, and H. Fayaz (2020). Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Scientific Reports, 10(1); 21960.

Youssif, A. A. A. and M. T. Hassan (2018). Synthesis and Characteristic of Carboxymethyl Cellulose from Baobab (Adansonia digitata L.) Fruit Shell. International Journal of Engineering and Applied Sciences (IJEAS), 5(12):1-10.

Çelikçi, N., C. A. Ziba, and M. Dolaz (2022). Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Different Waste Sources Containing Cellulose and Investigation of Its Use in the Construction Industry. Cellulose Chemistry and Technology, 56(1–2); 55–68.

Authors

Khusna Santika Rahmasari
khusnasantika@gmail.com (Primary Contact)
Achmad Vandian Nur
Eka Anydia Putri
Vanesa Maharani
Achmad Ridlo
Bayu Ishartono
Khusna Santika Rahmasari, Achmad Vandian Nur, Eka Anydia Putri, Vanesa Maharani, Achmad Ridlo, & Bayu Ishartono. (2025). Transforming Discarded Mature Coconut Water into Carboxymethyl Cellulose as A Precursor Material for Bioplastics. Science and Technology Indonesia, 10(3), 698–711. https://doi.org/10.26554/sti.2025.10.3.698-711

Article Details