Utilization of Activated Charcoal from Sawdust as an Antibiotic Adsorbent of Tetracycline Hydrochloride

Gatut Ari Wardani, Ega Maulana Qudsi, Anindita Tri Kusuma Pratita, Keni Idacahyati, Estin Nofiyanti

Abstract

The use of activated charcoal from sawdust as an adsorbent of tetracycline hydrochloride compounds has been successfully carried out. Sawdust activated charcoal was carbonized at 450°C for 40 minutes with a charcoal size of 100 mesh and activated using H3PO4 solution. The characteristics of active sawdust charcoal showed that water content, iodine adsorption, and methylene blue adsorption had met SNI 06-3730-1995 regarding technical activated charcoal. Testing the morphology of charcoal using a Scanning Electron Microscope showed that the charcoal pores were opened through the activation process. In the functional group analysis test using infrared spectroscopy, the active group contained in charcoal after being activated contained carbon atoms that were purer than sawdust. The adsorption process of tetracycline hydrochloride using sawdust activated charcoal is known to follow Ho or
Pseudo second-order (K = 0.0039 g/mg.min), while the adsorption isotherm follows the Langmuir equation, KL = 0.0076 L/mg and adsorption capacity amounting to 242.1307 mg/g. Thermodynamically, the adsorption process occurs not spontaneously with a Gibbs free energy value of 120.8949 kJ/mol and occurs by chemisorption.

References

Ahmad, A., Jini, D., Aravind, M., Parvathiraja, C., Ali, R., Kiyani, M. Z., & Alothman, A. (2020). A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arabian Journal of Chemistry, 13(12), 8717–8722. https://doi.org/10.1016/j.arabjc.2020.10.002
Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., & Garcia, J. (2016). Comparative Adsorption Performance of Iburofen and Tetracycline from Aqueous Solution by Carbonaceous Materials. Chemical Engineering Journal, 283, 936–947. https://doi.org/10.1016/j.cej.2015.08.023
Ashrafun, N., Md., A. I., Md., A. S., Md., J. H., Sumaiya, B. Z., Md., B. R., S., M. L. K., & Md., T. R. (2019). Detection of tetracycline resistant E. coli and Salmonella spp. in sewage, river, pond and swimming pool in Mymensingh, Bangladesh. African Journal of Microbiology Research, 13(25), 382–387. https://doi.org/10.5897/ajmr2019.9156
Babar, A. A., Panhwar, I., Qureshi, S., Memon, S., & Siddiqui, Z. (2019). Utilization of biomass (Rice straw) to produce activated charcoal through single stage pyrolysis process. Journal of International Environmental Application and Science, 14(1), 1–6. https://dergipark.org.tr/tr/pub/jieas/issue/44497/470969
D. Rocha, P., S. Franca, A., & S. Oliveira, L. (2015). Batch and Column Studies of Phenol Adsorption by an Activated Carbon Based on Acid Treatment of Corn Cobs. International Journal of Engineering and Technology, 7(6), 459–464. https://doi.org/10.7763/ijet.2015.v7.837
Hendra, D., Wulanawati, A., Gustina, K., & Wibisono, H. S. (2015). Utilization of Activated Charcoal Made of Bintaro’s Fruit Shell (Cerbera manghas) as an Adsorbent to Improve Water Quality. Jurnal Penelitian Hasil Hutan, 33(3), 181–191.
Huang, P. H., Cheng, H. H., & Lin, S. H. (2015). Adsorption of carbon dioxide onto activated carbon prepared from coconut shells. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/106590
Ilaboya, I. R., Oti, E. O., Ekoh, G. O., & Umukoro, L. . (2013). Performance of Activated Carbon from Cassava Peels for the Treatment of Effluent Wastewater. Iranica Journal of Energy and Environment, 4(4), 361–375. https://doi.org/10.5829/idosi.ijee.2013.04.04.08
Ingole, R. S., Lataye, D. H., & Dhorabe, P. T. (2016). Adsorption of Phenol onto Banana Peels Activated Carbon. 00(0000), 1–11. https://doi.org/10.1007/s12205-016-0101-9
Jawad, A. H., Rashid, R. A., Ishak, M. A. M., & Wilson, L. D. (2016). Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 57(52), 1–13. https://doi.org/10.1080/19443994.2016.1144534
Karimibavani, B., Sengul, A. B., & Asmatulu, E. (2020). Converting briquettes of orange and banana peels into carbonaceous materials for activated sustainable carbon and fuel sources. Energy, Ecology and Environment, 5(3), 161–170. https://doi.org/10.1007/s40974-020-00148-4
Karunakara, N., Kumara, K. S., Yashodhara, I., Sahoo, B. K., Gaware, J. J., Sapra, B. K., & Mayya, Y. S. (2015). Evaluation of radon adsorption characteristics of a coconut shell-based activated charcoal system for radon and thoron removal applications. Journal of Environmental Radioactivity, 142, 87–95. https://doi.org/10.1016/j.jenvrad.2014.12.017
Kazmierczak, J., Nowicki, P., & Pietrzak, R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption, 19, 273–281. https://doi.org/10.1007/s10450-012-9450-y
Kumar, A., & Jena, H. M. (2016). Results in Physics Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651–658. https://doi.org/10.1016/j.rinp.2016.09.012
L, K., CH, K., M, P., CH, I., & A, M. (2017). The Rational Use of Antibiotics Medicine. Journal of Healthcare Communications, 2(4), 1–4. https://doi.org/10.4172/2472-1654.100076
Madu, P. C., & Lajide, L. (2013). Physicochemical characteristics of activated charcoal derived from melon seed husk. Journal of Chemical and Pharmaceutical Research, 5(5), 94–98.
Miège, C., Choubert, J. M., Ribeiro, L., Eusèbe, M., & Coquery, M. (2009). Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results. Environmental Pollution, 157(5), 1721–1726. https://doi.org/10.1016/j.envpol.2008.11.045
Napitupulu, M., Al-Gifary, M., & Walanda, D. K. (2018). Adsorption of Cd (II) by Carbon Prepared from Peels and Stems of Kepok Banana (Musa paradisica formatypica). Cellulose Chemistry and Technology, 53(3–4), 387–394. http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2019)/p.387-394.pdf
Pena, A., Paulo, M., Silva, L. J. G., Seifrtová, M., Lino, C. M., & Solich, P. (2010). Tetracycline Antibiotics in Hospital and Municipal Wastewaters: A Pilot Study in Portugal. Analytical and Bioanalytical Chemistry, 396(8), 2929–2936. https://doi.org/10.1007/s00216-010-3581-3
Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012). Structural Differences Between Wood Species: Evidence from Chemical Composition, FTIR Spectroscopy, and Thermogravimetric Analysis. Journal of Applied Polymer Science, 116(5), 1–8. https://doi.org/10.1002/app
Ramangkoon, S., Saenjum, C., & Sirithunyalug, B. (2016). Preparation of rice straw activated charcoal by 2-step H3PO4 activation. International Journal of Pharmacy and Pharmaceutical Sciences, 8(4), 218–221.
Sahara, E., Sulihingtyas, W. D., & Mahardika, I. P. A. S. (2017). Pembuatan dan Karakteristisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes erecta) yang diaktivasi dengan H3PO4. Jurnal Kimia, 11(1), 1–9. https://doi.org/10.24843/jchem.2017.v11.i02.p12
Sharaf, G., & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology, 11(6), 1581–1590. https://doi.org/10.1007/s13762-013-0343-8
Sharma, V. K., Johnson, N., Cizmas, L., McDonald, T. J., & Kim, H. (2016). A Review of The Influence of Treatment Strategies on Antibiotic Resistant Bacteria and Antibiotic Resistance Genes. Chemosphere, 150, 1–13. https://doi.org/10.1016/j.chemosphere.2015.12.084
Shi, Y., Liu, G., Wang, L., & Zhang, H. (2019). Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: Remarkable adsorbents for sulfamethoxazole removal. RSC Advances, 9(31), 17841–17851. https://doi.org/10.1039/c9ra02610j
Song, Z., Ma, Y. L., Li, C. E., & Xu, M. (2018). Removal of tetracycline residue from pharmaceutical wastewater by using 3D composite film. Chemical Engineering Journal, 348, 898–907. https://doi.org/10.1016/j.cej.2018.05.002
Wang, R. Z., Huang, D. L., Liu, Y. G., Zhang, C., Lai, C., Zeng, G. M., Cheng, M., Gong, X. M., Wan, J., & Luo, H. (2018). Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresource Technology, 261, 265–271. https://doi.org/10.1016/j.biortech.2018.04.032
Wu, H., Li, Z., & Liu, H. (2018). Development of carbon adsorbents with high surface acidity and basicity from polyhydric alcohols with phosphoric acid activation for Ni(II) removal. Chemosphere, 206, 115–121. https://doi.org/10.1016/j.chemosphere.2018.04.165
Xiong, W., Zeng, Z., Zeng, G., Yang, Z., Xiao, R., Li, X., Cao, J., Zhou, C., Chen, H., Jia, M., Yang, Y., Wang, W., & Tang, X. (2019). Metal-organic frameworks derived magnetic carbon-ΑFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution. Chemical Engineering Journal, 374, 91–99. https://doi.org/10.1016/j.cej.2019.05.164
Yang, G., Gao, Q., Yang, S., Yin, S., Cai, X., Yu, X., Zhang, S., & Fang, Y. (2020). Strong Adsorption of Tetracycline Hydrochloride on Magnetic Carbon-coated Cobalt oxide Nanoparticles. Chemosphere, 239(January), 124831. https://doi.org/10.1016/j.chemosphere.2019.124831
Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013

Authors

Gatut Ari Wardani
gatutariwardani@stikes-bth.ac.id (Primary Contact)
Ega Maulana Qudsi
Anindita Tri Kusuma Pratita
Keni Idacahyati
Estin Nofiyanti
Wardani, G. A., Qudsi, E. M. ., Kusuma Pratita, A. T. ., Idacahyati, K. ., & Nofiyanti, E. . (2021). Utilization of Activated Charcoal from Sawdust as an Antibiotic Adsorbent of Tetracycline Hydrochloride. Science and Technology Indonesia, 6(3), 181–188. https://doi.org/10.26554/sti.2021.6.3.181-188

Article Details