Application of Non-Linear Kinetic and Isotherm Model for Investigation of Cod Removal from Tapioca Liquid Waste Onto Modified Lampung Natural Zeolite

Didik Supriyadi, Darmansyah, Ratna Puspita Sari, Amna Citra Farhan

Abstract

The experimental data analysis of tapioca liquid waste onto modified Lampung natural zeolite using non-linear regression models is limited. The adsorption data were analyzed with nine kinetic models (the pseudo-first-order, the pseudo-second-order, the intraparticle diusion, fractional power, Bangham, Elovich, mixed-1.2-order, modification of pseudo-second-order, and Avrami) and eight isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Liu, and Khan). The percentage of adsorption was decreased from 61.29% to 13.66% with increasing Chemical Oxygen Demand (COD) concentration 310 mg/L to 9450 mg/L. The result showed that the power model (R2 : 0.98, X2 : 0.137), Avrami (R2 : 0.98, X2 : 0.141), Bangham (R2 : 0.98, X2 : 0.145) and modified pseudo-second-order (R2 : 0.98, X2 : 0.147) can be recommended as the best fied to experimental kinetic data. The Khan model (R2 : 0.99961, X2 : 0.03729) and Langmuir (R2 : 0.99478, X2 : 0.24902) was the most reliable for describing the isotherm model. Thus, the analysis of experimental adsorption data using a non-linear regression model is highly recommended.

References

Bergmann, C. P. (2015). Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. https://doi.org/10.1007/978-3-319-18875-1
Darmansyah, Saputra, H., Simparmin, B. G., & Ardiana, L. (2016). Synthesis and characterization of MCM-41 from coal fly ash for tapioca wastewater treatment. ARPN Journal of Engineering and Applied Sciences, 11(7), 4772–4777.
de la Luz-Asunción, M., Pérez-Ramírez, E. E., Martínez-Hernández, A. L., Castano, V. M., Sánchez-Mendieta, V., & Velasco-Santos, C. (2019). Non-linear modeling of kinetic and equilibrium data for the adsorption of hexavalent chromium by carbon nanomaterials: Dimension and functionalization. Chinese Journal of Chemical Engineering, 27(4), 912–919. https://doi.org/10.1016/j.cjche.2018.08.024
Edma, N. A., Sulaiman, A., Noraida, S., & Rahim, A. (2014). Enzymatic saccharification of Tapioca processing wastes into biosugars through immobilization technology. 1, 2–6.
Fito, J., Tefera, N., & Hulle, S. W. H. Van. (2017). Journal of Environmental Chemical Engineering Adsorption of distillery spent wash on activated bagasse fl y ash : Kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 5(6), 5381–5388. https://doi.org/10.1016/j.jece.2017.10.009
Guo, J., Chen, S., Liu, L., Li, B., Yang, P., Zhang, L., & Feng, Y. (2012). Adsorption of dye from wastewater using chitosan-CTAB modified bentonites. Journal of Colloid and Interface Science, 382(1), 61–66. https://doi.org/10.1016/j.jcis.2012.05.044
Haerifar, M., & Azizian, S. (2014). Fractal-like kinetics for adsorption on heterogeneous solid surfaces. Journal of Physical Chemistry C, 118(2), 1129–1134. https://doi.org/10.1021/jp4110882
Halim, A. A., Aziz, H. A., Johari, M. A. M., & Ariffin, K. S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262(1–3), 31–35. https://doi.org/10.1016/j.desal.2010.05.036
Hermiati, E., Azuma, J., Sunarti, T. C., & Suparno, O. (2012). Potential utilization of cassava pulp for ethanol production in Indonesia. Scientific Research and Essays, 7(2), 100–106. https://doi.org/10.5897/SREX11.022
Ho, Y. S., & McKay, G. (1998). A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332–340. https://doi.org/10.1205/095758298529696
Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chemical Engineering Journal, 145(3), 489–495. https://doi.org/10.1016/j.cej.2008.05.002
Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. Journal of Hazardous Materials, 150(1), 158–165. https://doi.org/10.1016/j.jhazmat.2007.09.020
Kuo, C. (2009). Comparison with as-grown and microwave modi fi ed carbon nanotubes to removal aqueous bisphenol A. DES, 249(3), 976–982. https://doi.org/10.1016/j.desal.2009.06.058
Liu, J., Cheng, X., Zhang, Y., Wang, X., Zou, Q., & Fu, L. (2017). Zeolite modification for adsorptive removal of nitrite from aqueous solutions. Microporous and Mesoporous Materials, 252, 179–187. https://doi.org/10.1016/j.micromeso.2017.06.029
Marczewski, A. W. (2010). Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Applied Surface Science, 256(17), 5145–5152. https://doi.org/10.1016/j.apsusc.2009.12.078
Moussout, H., Ahlafi, H., Aazza, M., & Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4(2), 244–254. https://doi.org/10.1016/j.kijoms.2018.04.001
Nagy, B., Mânzatu, C., Măicăneanu, A., Indolean, C., Barbu-Tudoran, L., & Majdik, C. (2017). Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.03.004
Rodríguez, A., García, J., Ovejero, G., & Mestanza, M. (2009). Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics. Journal of Hazardous Materials, 172(2–3), 1311–1320. https://doi.org/10.1016/j.jhazmat.2009.07.138
Rosa, A., Cristiani-urbina, M. C., & Cristiani-, E. (2015). Chromium Biosorption from Cr ( VI ) Aqueous Solutions by Cupressus lusitanica Bark : Kinetics , Equilibrium and Thermodynamic Studies. Vi, 1–23. https://doi.org/10.1371/journal.pone.0137086
Shen, L., Wang, W., Li, T., Cui, Y., Wang, B., Yu, G., Wang, X., Wei, D., Xiao, J., & Deng, S. (2019). Powdered activated coke for COD removal in the advanced treatment of mixed chemical wastewaters and regeneration by Fenton oxidation. Chemical Engineering Journal, 371(February), 631–638. https://doi.org/10.1016/j.cej.2019.04.086
Sivarajasekar, N., & Baskar, R. (2014). Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: Process modeling, analysis and optimization using statistical design. Journal of Industrial and Engineering Chemistry, 20(5), 2699–2709. https://doi.org/10.1016/j.jiec.2013.10.058
State, K., State, E., & State, K. (2012). Langmuir , Freundlich , Temkin and Dubinin – Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2 + Unto Phosphoric Acid Modified Rice Husk. 3(1), 38–45.
Taylor, P., Verma, S., Prasad, B., Mishra, I. M., Verma, S., Prasad, B., & Mishra, I. M. (2014). Separation Science and Technology Adsorption Kinetics and Thermodynamics of COD Removal of Acid Pre-treated Petrochemical Wastewater by using Granular Activated Carbon Adsorption Kinetics and Thermodynamics of COD Removal of Acid Pre-treated Petrochemical Wastewater by using Granular INTRODUCTION. October, 37–41. https://doi.org/10.1080/01496395.2013.870200
Wang, L. C., Ni, X. jiong, Cao, Y. H., & Cao, G. qun. (2018). Adsorption behavior of bisphenol A on CTAB-modified graphite. Applied Surface Science, 428, 165–170. https://doi.org/10.1016/j.apsusc.2017.07.093
Zhao, Q., Gao, Y., & Ye, Z. (2013). Reduction of COD in TNT red water through adsorption on macroporous polystyrene resin RS 50B. Vacuum, 95, 71–75. https://doi.org/10.1016/j.vacuum.2013.02.016

Authors

Didik Supriyadi
didik.supriyadi@tk.itera.ac.id (Primary Contact)
Darmansyah
Ratna Puspita Sari
Amna Citra Farhan
Supriyadi, D., Darmansyah, Puspita Sari, . R. ., & Citra Farhan, A. . (2021). Application of Non-Linear Kinetic and Isotherm Model for Investigation of Cod Removal from Tapioca Liquid Waste Onto Modified Lampung Natural Zeolite. Science and Technology Indonesia, 6(4), 218–227. https://doi.org/10.26554/sti.2021.6.4.218-227

Article Details