Insecticidal Activity, Toxicity, Resistance and Metabolism of Pyrethroids: a Review

Ashutosh Singh, Abhishek Singh, Preeti Singh, Archana Chakravarty, Akhilesh Singh , Priti Singh, Mahendra Kumar Mishra, Vivek Singh, Atul Kumar Srivastava, Himanshu Aggarwal, Suresh Sagadevan

Abstract

Pyrethroids are synthetic or man-made versions of natural pyrethrins discovered in the flowers of a plant species of the Compositae family called "Chrysanthemum cinerariaefolium". The plant was transported into Europe and America after it was discovered in the Near East. Commercial insecticides such as pyrethrin and synthetic pyrethroid are available. These are used to control agricultural pests as well as non-agricultural insects. They are also commercially used in personal care items such as shampoo and as a scent in insect repellent to boost efficacy and persistence in the environment, these insecticides are frequently combined with additional chemicals in diverse formulations, known as synergists. Nerve toxins, known as pyrethroids, although their chemical mechanism of action is unknown. Pyrethroids are neurotoxins, which interfere with the messages sent along nerves by maintaining sodium and chloride channels in an open position. This review presents perspectives, commercial uses and other useful characteristics features of pyrethroids based on human benefits and environmental friendly

References

Abou-Donia, M. B., Wilmarth, K. R., Jensen, K. F., Oehme, F. W., & Kurt, T. L. (1996). Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: Implications of Gulf War chemical exposures. Journal of Toxicology and Environmental Health, 48(1), 35–56. https://doi.org/10.1080/009841096161456

Berger-preie ß, E.; Preie ß, A.; Berger-preiess, E., Preiess, A., Sielaff, K., Raabe, M., Ilgen, B., & Levsen, K. (1997)The Behaviour of Pyrethroids Indoors: A Model Study. Indoor Air, 7(4), 248–262. https://doi.org/10.1111/j.1600-0668.1997.00004.x

Bloomquist, J. R., Adams, P. M., & Soderlund, D. M. (1986). Inhibition of gamma-aminobutyric acid-stimulated chloride flux in mouse brain vesicles by polychlorocycloalkan and pyrethroid insecticides. Neurotoxicology, 7(3), 11–20.

Bradberry, S. M., Cage, S. A., Proudfoot, A. T., & Vale, J. A. (2005). Poisoning due to pyrethroids. Toxicological Reviews, 24(2), 93–106. https://doi.org/10.2165/00139709 200524020-00003

Bradberry, S. M., Cage, S. A., Proudfoot, A. T., & Vale, J. A. (2005). Poisoning due to pyrethroids. Toxicological Reviews, 24(2), 93–106. https://doi.org/10.2165/00139709-200524020-00003

Bradbury, J. E., Forshaw, P. J., Gray, A. J., & Ray, D. E. (1983). The action of mephenesin and other agents on the effects produced by two neurotoxic pyrethroids in the intact and spinal rat. Neuropharmacology, 22(7), 907–914. https://doi.org/10.1016/0028-3908(83)90139-9

Brodie, M. E., & Aldridge, W. N. (1982). Elevated cerebellar cyclic gpm levels during the deltamethrin-induced motor syndrome. Neurobehavioral Toxicology and Teratology, 4109–4113.

Buhagiar, T. S., Devine, G. J., & Ritchie, S. A. (2017). Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queens land. Parasites and Vectors, 274, 2107; 10

Cárcamo, J. G., Aguilar, M. N., Carreño, C. F., Vera, T., Arias-Darraz, L., Figueroa, J. E., Romero, A. P., Alvarez, M., & Yañez, A. J. (2017). Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (On corhynchus mykiss). Comparative Biochemistry and Physiology. Toxicology and Pharmacology, 191, 129–137. https://doi.org/10.1016/j.cbpc.2016.10.004

Chen, M., Du, Y., Zhu, G., Takamatsu, G., Ihara, M., Matsuda, K., Zhorov, B. S., & Dong, K. (2018 October). Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. Pesticide Biochemistry and Physiology, 151, 82–89. https://doi.org/10.1016/j.pestbp.2018.05.002. Epub May 3 2018. PubMed: 30704718

Choi, D. B., Grieco, J. P., Apperson, C. S., Schal, C., Ponnusamy, L., & Wesson, D. (2016). M; Achee no. L. Effect of Spatial Repellent Exposure on Dengue Vector Attraction to Oviposition Sites. PLoS Negl Trop Dis 10(7): e0004850. https://doi.org/10.1371/journal.pntd.0004850

Clark, J. M., & Brooks, M. W. (1989). Neurotoxicology of pyrethroids: Single or multiple mechanisms of action. Environmental Toxicology and Chemistry, 8, 361–372

Clark, J. M., & Matsumura, F. (1982). Two different types of inhibitory effects of pyrethroids on nerve Ca_ and Ca+ Mg-ATPase activity in the squid, Loligopealei. Pesticide Biochemistry and Physiology, 18(2), 180–190. https://doi.org/10.1016/0048-3575(82)90104-3

Clark, J. M., & Matsumura, F. (1987). The action of two classes of pyrethroids on the inhibition of brain Na-Ca and Ca + Mg ATP hydrolyzing activities of the American cockroach. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 86(1), 135–145. https://doi.org/10.1016/0742-8413(87)90156-3

Conney, A. H., Chang, R., Levin, W. M., Garbut, A., Munro-Faure, A. D., Peck, A. W., & Bye, A. (1972). Effects of piperonyl butoxide on drugmetabolism in rodents and man. Archives of Environmental Health, 24(2), 97–106. https://doi.org/10.1080/00039896.1972.10666058

Costa, L. G. (2015). The neurotoxicity of organochlorine and pyrethroid pesticides. Handbook of Clinical Neurology, 131, 135–148. https://doi.org/10.1016/B978-0-444-62627-1.00009 3

Cremer, J. E., Cunningham, V. J., Ray, D. E., & Sarna, G. S. (1980). Regional changes in brain glucoseutilization in rats given a pyrethroid insecticide. Brain Research, 194(1), 278–282. https://doi.org/10.1016/0006-8993(80)91344-x
Cut komp, L.K., Koch, R.B., Deaiah, D. Inhibition of ATPase by chlorinated hydrocarbons. (1982). In J. R. Coats (Ed.), Insecticid mode of action (pp. 45–69).

Dalvi, R. R., & Dalvi, P. S. (1991). Differences in the effects of piperine and piperonyl butoxideon hepatic drug-metabolizing enzyme system in rats. Drug and Chemical Toxicology, 14(1–2), 219–229. https://doi.org/10.3109/01480549109017878

Eells, J. T., Bandettini, P. A., Holman, P. A., & Propp, J. M. (1992). Pyrethroid insecticide-induced alterations in mammalian synaptic membrane potential. Journal of Pharmacology and Experimental Therapeutics, 262(3), 1173–1181.

EPA. (2009). Registration eligibility decision for allethrins. Prevention, pesticides and toxic substances, 172.

EPA. (2009). Registration eligibility decision for cypermethrin. Prevention, pesticides and toxic substances, 113.

European Commission. (2009). Commission Decision of concerning the non-inclusion of bifenthrin in. In Official Journal of the European Union: Volume 2009/887/EC, 41 Annex I to Council Directive 91/414/EE C and the withdrawal of authorisations for plant protection products containing that substance

FMC Agricultural Chemicals Group. (1989). Dear California customer [Letter].

FMC Corporation. (1988). safety data sheet: Talstar (R) 2-EC insecticide/miticide. FMC Corporation; MSDS #82657-04-3-2.

FMC Corporation. (1989); MSDS 52645-53-1-2. Material safety data sheet: Pounce (R) 1.5 Ginsecticide. FMC Corporation.

Forshaw, P. J., & Ray, D. E. (1990). A novel action of deltamethrin on membrane resistance in mammalian skeletal muscle and non-myelinated nerve fibres. Neuropharmacology, 29(1), 71–81. https://doi.org/10.1016/0028-3908(90)90086-7

Forshaw, P. J., & Ray, D. E. (1993). A voltage-dependent chloride channel in NIE115 neuroblas toma-cells is activated by protein-kinase-C and also by the pyrethroid deltamethrin [Abstract]. Journal of Physiology, 467, 252.

Forshaw, P. J., Lister, T., & Ray, D. E. (2000). The role of voltage-gated chloride channels in type II pyrethroid insecticide poisoning. Toxicology and Applied Pharmacology, 163(1), 1–8. https://doi.org/10.1006/taap.1999.8848

G. Daniel Todd, G., Wohlers, G. A. D., & Citra, M. (September 2003). Toxicological profile for pyrethrins and pyrethroids [U.S. Department of Health and Human Service,S Public Health Service Agency for Toxic Substances and Disease Registry]. https://www.atsdr.cdc.gov/toxprofiles/tp155-c6.pdf. In.

Giroux, I. (2014). Présence de pesticides dans l’eau au Québec -Zone de vergers et de pommes de terre 2010 à 2012 p. 84. Québec.

Giroux, I., & Fortin, I. (2010). Pesticides dans l’eau de surfaced’une zone maraîchère—Ruisseau Guibeault-Delisledans les “terres noires” du bassin versant de la rivière Châteauguay de 2005 à 2007. Ministère du Développement durable, de l’environnement et des Parcs—Direction du suivi de l’état de l’environnement et Université Laval—Département des Sols et de genie agro alimentaire, 28.

Gong, D. C. (2013). Pyrethroids pesticides residues and their behavior in a MultimediumEnvironment of Liangtan RiverBasin [Masters Thesis]. Chongqing University.

Gosselin, R. E. et al. (1989). Clinical toxicology of commercial product.

Goulson, D., Lye, G. C., & Darvill, B. (2008). The decline and conservation of bumblebees. Annual Review of Entomology, 53, 191–208. http://doi.org/10.1146/annurev.ento.53.103106.093454, PubMed: 17803456

He, F., Zhang, Z., Chen, S. et al. (1990). Effects of combined exposure to pyrethroids and methamidophos on sprayers. Arch. Complex Environ. Stud, 2, 31–36.

Hodgson, E., & Levi, P. E. (1999). Interactions of piperonyl butoxide with cytochrome P450. In D. Glynne Jones (Ed.), Piperonyl butoxide (pp. 41–53). Academic Press.

Huazhang, H., Fleming, C. D., Nishi, K., Redinb, M. R., & Hammock, B. D. (2005 September). Stereoselective hydrolysis of pyrethroid-like FluorescentSubstrates by human and other mammalian LiverCarboxylesterases. Chemical Research in Toxicology, 18(9), 1371–1377.

Hutson, D. H. (1979). The metabolic fate of synthetic pyrethroid insecticides in mammals. In Progress in Drug Metabolism J. W. Bridges & L. F. Chasseaud (Eds.). John Wiley & Sons, 215–252.

ICI Americas, Inc. (1989). Material safety datasheet: Demon (R) TC insecticide, 39453(C). ICI Americas, Inc.

Joy, R. M., & Albertson, T. E. (1991). Interactions of GABAA antagonists with deltamethrindiazepam, pentobarbital, and SKF100330A in the rat dentate gyrus. Toxicology and Applied Pharmacology, 109(2), 251–262. https://doi.org/10.1016/0041-008x(91)90173-c

Kallaji, M. Mosquito/black flyadulticide (Brand Name Scourge (R)) proposed for aerial spray applications in the Adirondack Park [Memorandum]. New York Department of Law and Environmental Protection Bureau. (March 1990).
Kaneko, H., & Miyamoto, J. (2001). Pyrethroid chemistry and metabolism. In Krieger RI editor. Handbook of pesticide toxicology (2nd ed) (pp. 1263–1288). Academic Press.

Kinsler, S., Levi, P. E., & Hodgson, E. (1990). Relative contributions of the cytochrome P450 and flavin-containing mono oxygenases to the microsomal oxidation of phorate following treatment of mice with phenobarbital, hydrocortisone, acetone, and piperonyl butoxide. Pesticide Biochemistry and Physiology, 37(2), 174–181. https://doi.org/10.1016/0048-3575(90)90123-J

Koureas, M., Tsakalof, A., Tsatsakis, A., & Hadjichristodoulou, C. (2011); 10; 007. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicology Letters, 210(2), 155.e168. https://doi.org/10.1016/j.toxlet

Krieger, R. I. (Ed.). Handbook of pesticide toxicology, 2. Agents (2nd ed). SanDiego (CA): Academic Press. (2001).

Kuivila, K. M., Hladik, M. L., Ingersoll, C. G., Kemble, N. E., Moran, P. W., Calhoun, D. L., Nowell, L. H., & Gilliom, R. J. (2012). Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven USmetropolitan areas. Environmental Science and Technology, 46(8), 4297–4303. https://doi.org/10.1021/es2044882

Kuivila, K. M., Hladik, M. L., Ingersoll, C. G., Kemble, N. E., Moran, P. W., Calhoun, D. L., Nowell, L. H., & Gilliom, R. J. (2012). Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven US metropolitan areas. Environmental Science and Technology, 46(8), 4297–4303. https://doi.org/10.1021/es2044882

Larocque, M., Gagné, S., Barnetche, D., Meyzonnat, G., Graveline, M.-H., & Ouellet, M.-A. (2015). Projet de connaissancedes eaux souterraines de la zone Nicolet et de la partiebasse de la zone Saint-François RAPPORT FINAL.rapport déposé au Ministère du Développementdurable, de l’environnement et de la Lutte contre leschangements climatiques; Université du Québec À Montréal. Département des Sciences de la Terre et del’atmosphère p. 25. Montréal, Canada.

Leahey, J. P. (1985). Metabolism and environmental degradation. In J. P. Leahey (Ed.), The pyrethroid insecticides (pp. 263–342). Taylor & Francis.

Ma, X. (2009). Research progress on analytical technique of pyrethroid pesticide residue. Journal of Anhui Agricultural Sciences, 37(28), 13775–13777.

Matsui, R., Takiguchi, K., Kuwata, N., Oki, K., Takahashi, K., Matsuda, K., & Matsuura, H. (2020). Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II. Scientific Reports, 10(1), 6366. https://doi.org/10.1038/s41598-020-63026-3

Matsuo, N. (2019). Discovery and development of pyrethroid insecticides. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 95(7), 378–400. https://doi.org/10.2183/pjab.95.027

Mddelcc, N. commercialux des pesticides de classe 3 autorisés dans les garderies et les écoles (Ingrédients actifs mentionnés à l’annexe II du Code de gestion despesticides) November. (2015). Government du Québec. In 2015, 2.

Mddep, P. (2005). L’environnement et la santé dans lescentres de la petite enfance et les écoles—Lesorganismes indésirables: Comment les contrôlerefficacement—Blatte. In Gouvernement du Québec, 4.

Miyamoto, J., Kaneko, H., Tsuji, R., & Okuno, Y. (1995). Pyrethroids, nerve poisons: How their risks to human health should be assessed. Toxicology Letters, 82–83, 933–940. https://doi.org/10.1016/0378-4274(95)03604-0

Moore, A., & Waring, C. P. (2001). The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquatic Toxicology, 52(1), 1–12. https://doi.org/10.1016/s0166-445x(00)00133-8

Motomura, H., & Narahashi, T. Interaction of tetramethrin and deltamethrin at the single sodium channel in rat hippocampal neurons. (2001). NeuroToxicology, 22(3), 329–339. https://doi.org/10.1016/S0161-813X(01)00023-7

Müller-Mohnssen, H. (1999). Chronic sequelae and irreversible injuries following acute pyrethroids intoxication. Toxicology Letters, 107(1–3), 161–176. https://doi.org/10.1016/s0378-4274(99)00043-0

Narahashi, T. (1989). The role of ion channels in insecticide action. In T. Narahashi & J. E. Chambers (Eds.), Insecticide action: From molecule to organism (pp. 55–84). Plenum Press.

Olson, J. F., Eaton, M., Kells, S. A., Morin, V., & Wang, C. (2013). Cold tolerance of bed bugs and practical recommendations for control. Journal of Economic Entomology, 106(6), 2433–2441. https://doi.org/10.1603/ec13032

Oros, D. R., & Werner, I. (2005). Pyrethroid Insecticides: Analysis of use patterns, distributions, potential toxicity and fate in the Sacramento–San Joaquin Delta and Central Valley. San Francisco Estuary Institute.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Qiuyan, Z., Yang, Y., Yingying, Z., & Zhiting, L. Paul O’N.; David H.; , Kun Z.; Suqing Z. (2020) Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review) , 254. PubMed: 126779

Radwan, M., Jurewicz, J., Wielgomas, B., Piskunowicz, M., Sobala, W., Radwan, P., Jakubowski, L., Hawuła, W., & Hanke, W. (2014); 12; 077. The association between environmentalexposure to pyrethroids and sperm aneuploidy. Chemosphere, 128, 42–48. https://doi.org/10.1016/j.chemosphere

Rao, K. S. P., Chetty, C. S., & Desaiah, D. (1984). In vitro effects of pyrethroids on rat brain and liver ATPase activities. Journal of Toxicology and Environmental Health, 14(2–3), 257–265. https://doi.org/10.1080/15287398409530578

Ray, D. E. (1982). The contrasting actions of two pyrethroids (deltamethrin and cismethrin) in the rat. Neurobehavioral Toxicology and Teratology, 4(6), 801–804.

Ray, D. E. (1991). Pesticides derived from plants and other organisms. 13.2 Pyrethrum and related compounds. In W. J. Hayes, Jr. & E. R. Laws, Jr. (Eds.), Handbook of pesticide toxicology (pp. 585–636). Academic Press.

Ray, D. E. (2004). Toxicology of pyrethrins and synthetic pyrethroids. In T. C. Marrs & B. Ballantyne (Eds.), Pesticide toxicology and international regulation. Chich- ester (pp. 129–158). John Wiley & Sons.

Ray, D. E., Sutharsan, S., & Forshaw, P. J. (1997). Actions of pyrethroid insecticides on voltage gated chloride channels in neuroblastoma cells. Neurotoxicology, 18(3), 755–760.

Santé Canada, B. (2010). Feuillet de renseignements surles organismes nuisibles. In Gouvernement du Canada:, 2.
Shu, J. (2016). How should I treat my daughter’s lice In CNN Health, 201http://thechart. Accessed online. http://blogs.cnn.com/2011/03/28/how should itreatmy daughters-lice/

Smith, T. M., & Stratton, G. W. (1986). Effects of synthetic pyrethroid insecticides on nontarget organisms. Residue Reviews, 97, 93–120. https://doi.org/10.1007/978-1-4612-4934-4_4

Soderlund, D. M. (2012). Molecular mechanisms of pyrethroid insecticide neurotoxicity. Recent Advances. Archives of Toxicology, 86(2), 165–181. https://doi.org/10.1007/s00204-011-0726-x

Soderlund, D. M., & Bloomquist, J. R. (1989). Neurotoxic actions of pyrethroid insecticides. Annual Review of Entomology, 34, 77–96. https://doi.org/10.1146/annurev.en.34.010189.000453

Soderlund, D. M., & Casida, J. E. (1977). Effects of pyrethroid structure on rates of hydrolysis and oxidation by mouse liver microsomal enzymes. Pesticide Biochemistry and Physiology, 7(4), 391–401. https://doi.org/10.1016/0048-3575(77)90043-8

Stork, N. E., & Eggleton, P. (1992). Invertebrates as determinants and indicators of soil quality. American Journal of Alternative Agriculture, 7(1–2), 38–47. https://doi.org/10.1017/S0889189300004446
Synthetic Pyrethroids, Beyond Pesticide. http://www.beyondpesticides.org/mosquito/documents/Synthetic. (2014).

Takashi, O. e.t al. (1994). Chronic Toxicity Studies of Piperonyl Butoxide in F, 344.

Thatheyus, A. J., & Gnana Selvam, A. D. G. (2013). Synthetic pyrethroids: Toxicity and biodegradation. Applied Ecology and Environmental Sciences, 1(3), 33–36. https://doi.org/10.12691/aees-1-3-2

Thatheyus1 A., J., Thatheyus, A. J., & Gnana Selvam, A. D. (2013)Synthetic Pyrethroids: Toxicity and Biodegradation. Applied Ecology and Environmental Sciences, 1(3), 33–36. https://doi.org/10.12691/aees-1-3-2

Todd G. D., Wohlers D, Citra M, (2003). Toxicological profile for pyrethrins and Pyrethroids. In U.S. Public Health Service, ATSDR (Agency for Toxic Substances and Disease Registry),, 3 p. 328. United States Department of Health and Human Services.

Van Engelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R., & Pettis, J. S. (2009). Colony collapse disorder: A descriptive study, PLoS ONE 4(8): e6481. https://doi.org/10.1371/journal.pone.0006481

Vijverberg, H. P. M., & van den Bercken, J. (1982). Annotation. Action of pyrethroid insecticides on the vertebrate nervous system. Neuropathology and Applied Neurobiology, 8(6), 421–440. https://doi.org/10.1111/j.1365-2990.1982.tb00311.x

Walters, J. K., Boswell, L. E., Green, M. K., Heumann, M. A., Karam, L. E., Morrissey, B. F., & Waltz, J. E. (2009). Pyrethrinand pyrethroid illnesses in the Pacific Northwest: A five year review. Public Health Reports, 124(1), 149–159. https://doi.org/10.1177/003335490912400118

Weston, D. P., & Lydy, M. J. (2010). Urban and agricultural sources of pyrethroid insecticides to the Sacramento–San Joaquin Delta of California. Environmental Science and Technology, 44(5), 1833–1840. https://doi.org/10.1021/es9035573

Williamson, E. G. Long, S. F., Kallman, M. J., & Wilson, M. C. (1989). A comparative analysis of the acute toxicity of technical-grade pyrethroid insecticide sands their commercial formulations. Ecotoxicology and Environment Safety, 18, 27–34. https://doi.org/10.1016/0147-6513(89)90089-4’

Zhang, S. Y., Ito, Y., Yamanoshita, O., Yanagiba, Y., Kobayashi, M., Taya, K., Li, C., Okamura, A., Miyata, M., Ueyama, J., Lee, C. H., Kamijima, M., & Nakajima, T. (2007). Permethrin may disrupt testosterone biosynthesis via mitochondrial membrane damage of Leydig cells inAdult male mouse. Endocrinology, 148(8), 3941–3949. https://doi.org/10.1210/en.2006-1497

Zhang, Z. W., Sun, J. X., Chen, S. Y., Wu, Y. Q., & He, F. S. (1991). Levels of exposure and biological monitoring of pyrethroids in spraymen. British Journal of Industrial Medicine, 48(2), 82–86. https://doi.org/10.1136/oem.48.2.82

Zhao, L. N. Residue and risk assessment of 7 kinds of pyrethroids in water environment in the Pearl River [Masters Thesis]. Delta. Shanghai Ocean University.

Zhou, J., Kang, H. M., Lee, Y. H., Jeong, C. B., Park, J. C., & Lee, J. S. (2019). Adverse effects of a synthetic pyrethroid insecticide cypermethrin on life parameters and antioxidant responses in the marine copepods Paracyclopina nana and Tigriopus japonicus. Chemosphere, 217, 383–392. https://doi.org/10.1016/j.chemosphere.2018.10.217

Authors

Ashutosh Singh
Abhishek Singh
Preeti Singh
Archana Chakravarty
Akhilesh Singh
Priti Singh
Mahendra Kumar Mishra
Vivek Singh
Atul Kumar Srivastava
Himanshu Aggarwal
Suresh Sagadevan
drsureshnano@gmail.com (Primary Contact)
Singh, A. ., Singh, A. ., Singh, P. ., Chakravarty, A. ., Singh , A., Singh, P. ., Mishra, M. K. ., Singh, . V. ., Srivastava, A. K. ., Aggarwal, H. ., & Sagadevan, S. (2022). Insecticidal Activity, Toxicity, Resistance and Metabolism of Pyrethroids: a Review. Science and Technology Indonesia, 7(2), 238–250. https://doi.org/10.26554/sti.2022.7.2.238-250

Article Details

Most read articles by the same author(s)