Effect of Photosynthetic Pigment Composition of Tropical Marine Microalgae from Ambon Bay Navicula sp. TAD on Dye-Sensitized Solar Cell Efficiency

Ivon Telussa, Eirene G. Fransina, Eka Rahmat Mahayani Anthonio Putera Lilipaly, Alfa Musa Imanuel Efruan


Solar cells using dyes as sensitizers continue to expand. The synthetic dye used as a sensitizing material for solar cells has high production costs, difficult to find, and can cause environmental pollution. Photosynthetic pigments as sensitizers are considered to be the solution to this matter. In this research, we investigated the effect of photosynthetic pigments from the Navicula sp. TAD as a dye-sensitized material on the efficiency of Dye-Sensitized Solar Cell. To obtain high biomass, the Navicula sp. TAD was cultivated in a modified medium. Pigment extract from dry biomass using acetone, then continued with purification of the pigment using column chromatography techniques. Characterization of pigment by scanning the absorption pattern of visible rays, the fabrication of solar cells with TiO2 paste, and the photographic test of the solar cells filled with solar simulators. Navicula sp. TAD has photosynthetic pigments consisting of chlorophyll and carotenoid with 8.570 gmL−1 and 2.581 gmL−1, respectively. Solar cells using pigment crude extract, chlorophyll, and xanthophyll which TiO2 absorbs as electrodes, have efficiency values of 6.150×10−4, 3.482×10−3, and 4.117×10−3%, respectively.


Barsanti, L., & Gualtieri, P. (2006). Algae: Anatomy, Biochemistry, and Biotechnology Fourth Edition. Florida: Taylor & Francis Group.

Chang, H., Kao, M. J., Chen, T. L., Chen, C. H., Cho, K.Ch.,& Lai, X. R. (2013). Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 6346: 1-9.

Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physic, 25(5): 676-677.

Chiba, Y. (2006). Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1 %. Japanese Journal of Applied Physics, 45(25): 638-640.

Fiedor, L., Kania, A., Mysliwa-Kurdziel, B., & Orzel. (2008). Understanding Cholophyills: Central Magnesium Ion and Phytyl as Structural Determinants. Biochimica et Biophysica Acta, 1777(12): 1491-1500.

Gómez-Ortíz, N., I. Vázquez-Maldonado, A. Pérez-Espadas, G. Mena-Rejón, J. Azamar-Barrios, and G. Oskam (2010). Dye-sensitized Solar Cells with Natural Dyes Extracted from Achiote Seeds. Solar Energy Materials and Solar Cells, 94(1); 40–44

Huang, D.-R., Y.-J. Jiang, R.-L. Liou, C.-H. Chen, Y.-A. Chen, and C.-H. Tsai (2015). Enhancing the Eciency of Dye-sensitized Solar Cells by Adding Diatom Frustules Into TiO2 Working Electrodes. Applied Surface Science, 347; 64–72

Hynninen, P. H., Ellfolk, N., Enzell, C. R., & Swahn, C. G. (1973). Chlorophylls. III. Keto-Enol Tautomerism of Chlorophylls a and b. Nature of Chlorophylls a' and b'. Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry, 27:1487-1495.

Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008). Metabolic Insertion of Nanostructured TiO2 Into the Patterned Biosilica of the Diatom Pinnularia sp. by a Two-stage Bioreactor Cultivation Process. Acs Nano, 2(10); 2103–2112

Jin, E. M., K.-H. Park, B. Jin, J.-J. Yun, and H.-B. Gu (2010). Photosensitization of Nanoporous TiO2 Films with Natural Dye. Physica Scripta, 2010(139); 1–5

Kuczynska, P., Jemiola-Rzeminska , M., & Strzalka, K. (2015). Photosynthetic Pigments in Diatoms. Marine drugs, 13: 5847-5881.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Journal of Methods in Enzymology, 148: 350-382.

Milenković, S. M., Zvezdanović, J. B., Anđelković, A. D., & Marković, D. Z. (2012). The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Advanced technologies, 1(1):16-24.

Nurachman, Z., Hartini, Rahmaniyah, W. R., Kurnia, D., Hidayat, R., Prijamboedi, B., . . . Nurbaiti, S. (2015). Tropical Marine Chorella sp. PPI as a Source of Photosynthetic Pigments for Dye-Sensitized Solar Cells. Journal Algal Research, 10: 25-32.

Orona-Navar, A., Aguilar-Hernández, I., López-Luke, T., Pacheco, A., & Ornelas-Soto , N. (2020). Dye Sensitized Solar Cell (DSSC) by Using a Natural Pigment from Microalgae. International Journal of Chemical Engineering and Applications, 11 (1): 14-17

Pangestuti, D. L., Gunawan, & Haris, A. (2008). Pembuatan Dye Sensitized Solar Cells (DSSC) dengan Sensitaizer Antosianin dari Buah Buni (Antidesma Bunius L). Jurnal Kimia Sains dan Aplikasi, 11(3): 70-77.

Polo, A. S. and N. Y. M. Iha (2006). Blue Sensitizers for Solar Cells: Natural Dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells, 90(13); 1936–1944

Santoso, A. D. (2017). Pemanenan Mikroalga Dengan Metode Sedimentasi. Jurnal Rekayasa Lingkungan, 10:1.
Stramski, D., Sciandra, A., & Claustre, H. (2012). Effect of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnology and OceanographY, 47: 397–492.

Shanmugam, V., S. Manoharan, S. Anandan, and R. Murugan (2013). Performance of Dye-sensitized Solar Cells Fabricated with Extracts from Fruits of Ivy Gourd and Flowers of Red Frangipani as Sensitizers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104; 35–40

Stramski, D., A. Sciandra, and H. Claustre (2002). Eects of Temperature, Nitrogen, and Light Limitation on the Optical Properties of the Marine Diatom Thalassiosira pseudonana. Limnology and Oceanography, 47(2); 392–403

Telussa, I., Hattu, N., & Sahalessy, A. (2022). Morphological Observation, Identification and Isolation of Tropical Marine Microalgae from Ambon Bay, Maluku. Journal of Chemical Research, 9(3): 137-143.

Telussa, I., Rusnadi, & Nurachman, Z. (2019). Dynamics Of β-Carotene And Fucoxanthin Of Tropical Marine Navicula Sp. As Response To Light Stress Conditions. Algal Research, 41(101530) : 1-10

Wang, Z.-S., H. Kawauchi, T. Kashima, and H. Arakawa (2004). Significant Inuence of TiO2 Photoelectrode Morphology on the Energy Conversion Eciency of N719 Dye-sensitized Solar Cell. Coordination Chemistry Reviews, 248(13-14); 1381–1389

Wright, S. W., & Jeffrey, S. W. (1987). Fucoxanthin Pigment Markers of Marine Phytoplankton Analysed by HPLC. Marine Ecology-Progress Series, 38(3): 259-266.

Zhang, Z., Zhang, X., Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157: 149–153.


Ivon Telussa
telussaivon@gmail.com (Primary Contact)
Eirene G. Fransina
Eka Rahmat Mahayani Anthonio Putera Lilipaly
Alfa Musa Imanuel Efruan
Telussa, I., Fransina, E. G. ., Lilipaly, E. R. M. A. P. ., & Efruan, A. M. I. . (2022). Effect of Photosynthetic Pigment Composition of Tropical Marine Microalgae from Ambon Bay Navicula sp. TAD on Dye-Sensitized Solar Cell Efficiency. Science and Technology Indonesia, 7(4), 486–491. https://doi.org/10.26554/sti.2022.7.4.486-491

Article Details