Development and Testing a Method for Retrieving Atmospheric Aerosol Optical Thickness based on the Solar Intensity from the Sun-photometer Data
Abstract
The context of atmospheric aerosols is an indispensable aspect in studying the Earth’s radiation budget, climate change, and air quality. Therefore, the quality technique in retrieving aerosol parameters is important for a better understanding their characteristics. The precise calculating of the aerosol physical parameter in the planetary boundary layer will increase the accuracy of evaluation of their impact on environmental conditions. In several atmospheric corrections of optical remote sensing using satellite sensors, the AOT’s values play an important role in arranging a Look Up Table (LUT) for scattering parameters. Therefore, this study aims to develop a method for processing and correcting the sun-photometer data to obtain the original AOT in the planetary boundary layer. In AOT calculation using the sun-photometer data, the solar radiation at the extraterritorial of the atmosphere is determined using the Langley plot. Then, using the target data at the same season as the data for the Langley plot, the temporal change of AOT is estimated by employing the Lambert-Beer Law with some corrections. The major correction for the AOT’s values computation in the measurement target is the contribution of molecule from the local station and Ozone (O3) from the GOME-2 satellite data. The result has been compared with an independent measurement using a sky-radiometer at the same time as the sun-photometer monitoring. From the overall procedure, the AOT’s values have uncertainties at approximately 2-5% compared to the sky-radiometer. Therefore, the procedure will be useful for studying aerosol optical properties in the lower troposphere.
References
Aminuddin, J., Manago, N., Lagrosas, N., Okude, S., & Kuze, H. (2018). Simultaneous Observation of Temporal and Spatial Distribution of Atmospheric Aerosol by means of Slant-path and Plan Position Indicator Lidars. Proc. SPIE 10779, Lidar Remote Sensing for Environmental Monitoring XVI, 107790F (28 October 2018), 10779, 15. https://doi.org/10.1117/12.2324688.
Aminuddin, J., Okude, S., Alimuddin, I., Tursilowati, L., Manago, N., & Kuze, H. (2019). Development of LED-DOAS System for Observing Aerosol Optical Properties in the Lower Troposphere. Journal of Physics: Conference Series, 1341(8). https://doi.org/10.1088/1742-6596/1341/8/082006.
Aminuddin, J., Okude, S., Lagrosas, N., Manago, N., & Kuze, H. (2018a). Real Time Derivation of Atmospheric Aerosol Optical Properties by Concurrent Measurements of Optical and Sampling Instruments. Open Journal of Air Pollution, 07(02), 140–155. https://doi.org/10.4236/ojap.2018.72008.
Aminuddin, J., Purbantoro, B., Lagrosas, N., Manago, N., & Kuze, H. (2018b). Landsat-8 Satellite and Plan Position Indicator Lidar Observations for Retrieving Aerosol Optical Properties in the Lower Troposphere. Advances in Remote Sensing, 07(03), 183–202. https://doi.org/10.4236/ars.2018.73013.
Cerqueira, J. G., Fernandez, J. H., Hoelzemann, J. J., Leme, N. M. P., & Sousa, C. T. (2014). Langley Method Applied in Study of Aerosol Optical Depth in the Brazilian Semiarid Region using 500, 670 and 870 nm Bands for Sun Photometer Calibration. Advances in Space Research, 54(8), 1530–1543. https://doi.org/10.1016/j.asr.2014.06.006.
Chen, J., Zhao, C. S., Ma, N., & Yan, P. (2014). Aerosol Hygroscopicity Parameter Derived from The Light Scattering Enhancement Factor Measurements in the North China Plain. Atmospheric Chemistry and Physics, 14(15), 8105–8118. https://doi.org/10.5194/acp-14-8105-2014.
Chen, W. N., Chen, Y. W., Chou, C. C. K., Chang, S. Y., Lin, P. H., & Chen, J. P. (2009). Columnar Optical Properties of Tropospheric Aerosol by Combined Lidar and Sunphotometer Measurements at Taipei, Taiwan. Atmospheric Environment, 43(17), 2700–2708. https://doi.org/10.1016/j.atmosenv.2009.02.059.
Chubarova, N. Y., Poliukhov, A. A., & Gorlova, I. D. (2016). Long-term Variability of Aerosol Optical Thickness in Eastern Europe over 2001-2014 According to the Measurements at the Moscow MSU MO AERONET site with Additional Cloud and NO2 Correction. Atmospheric Measurement Techniques, 9(2), 313–334. https://doi.org/10.5194/amt-9-313-2016.
Chung, C. E. (2012). Aerosol Direct Radiative Forcing: A Review. In Atmospheric Aerosols – Regional Characteristics–Chemistry and Physics models (pp. 379–394). In Tech Publication. https://doi.org/http://dx.doi.org/10.5772/50248.
Evgenieva, T., Gurdev, L., Toncheva, E., & Dreischuh, T. (2022). Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements. Atmosphere, 13(6), 884. https://doi.org/10.3390/ atmos13060884.
Fernald, F. G. (1984). Analysis of Atmospheric Lidar Observations: some comments. Applied Optics, 23(5), 652. https://doi.org/10.1364/AO.23.000652.
IPPC. (2007). Climate Change 2007: The Physical Science Basis. In Intergovernmental Panel on Climate Change (Vol. 446, Issue November). https://doi.org/10.1256/004316502320517344.
Jin, Y., Hao, Z., Chen, J., He, D., Tian, Q., Mao, Z., & Pan, D. (2021). Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China. Remote Sensing, 13(3), 1–19. https://doi.org/10.3390/rs13030415.
Kaufman, Y. J. (1993). Aerosol Optical Thickness and Atmospheric Path Radiance. Journal of Geophysical Research, 98, 2677–2692. https://doi.org/10.1029/92JD02427.
Kinjo, H., Kuze, H., Takamura, T., Yabuki, M., & Takeuchi, N. (2001). Determination of Aerosol Extinction-to-Backscattering Ratio from Multiwavelength Lidar Observation. Jpn. J. Appl. Phys., 40(1), 434–440.
Kuze, H. (2012a). Characterization of Tropospheric Aerosols by Ground-based Optical Measurements. SPIE Newsroom, 2–4. https://doi.org/10.1117/2.1201211.004555.
Kuze, H. (2012b). Multi-Wavelength and Multi-Direction Remote Sensing of Atmospheric Aerosols and Clouds, Remote Sensing - Applications. In D. B. Escalante (Ed.), InTech, Available from: (pp. 279–294). In Tech. http://www.intechopen.com/books/remote-sensing-applications/multi-wavelength-and-multi-direction-remote-sensing-of-atmospheric-aerosols-and-clouds.
Manago, N., Miyazawa, S., Bannu, & Kuze, H. (2011). Seasonal Variation of Tropospheric Aerosol Properties by Direct and Scattered Solar Radiation Spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(2), 285–291. https://doi.org/10.1016/j.jqsrt.2010.06.015.
Nelli, N., Fissehaye, S., Francis, D., Fonseca, R., Temimi, M., Weston, M., and Nesterov, O. (2021). Characteristics of Atmospheric Aerosols over the UAE Inferred from CALIPSO and Sun Photometer Aerosol Optical Depth. Earth and Space Science, 8(6), e2020EA001360. https://doi.org/10.1029/2020EA001360.
Qiu, J. (1998). A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation. Journal of the Atmospheric Sciences, 55(Kasten 1980), 744–757. https://doi.org/10.1175/1520-0469(1998)055(0744:AMTDAA)2.0.CO;2.
Seinfeld, H., & Pandis, S. (1998). Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley & Sons.
Shaw, G. E. (1983). Sun Photometry. In Bulletin of the American Meteorological Society (Vol. 64, Issue 1, pp. 4–10). https://doi.org/10.1175/1520-0477(1983)064(0004:SP)2.0.CO;2.
Titos, G., Lyamani, H., Cazorla, A., Sorribas, M., Foyo-Moreno, I., Wiedensohler, A., & Alados-Arboledas, L. (2014). Study of the Relative Humidity Dependence of Aerosol Light-Scattering in Southern SPAIN. Tellus, Series B: Chemical and Physical Meteorology, 66(1), 1–15. https://doi.org/10.3402/tellusb.v66.24536.
Wu, X., Yuan, J., Wei, T., Zhang, Y., Wu, K., & Xia, H. (2022). Variation of Aerosol Optical Depth Measured by Sun Photometer at a Rural Site near Beijing during the 2017–2019 Period. Remote Sensing, 14(12), 2908. https:// doi.org/10.3390/rs14122908.
Xue, Z., Kuze, H., Irie, H., Damascena, A. S., Yamasoe, M. A., Martins, V. S., Rosas, J., Benavente, N. R., Sánchez, M. P., Tanaka, N. I., Saldiva, P. H. N., He, Q., Wang, M., Yim, S. H. L., Nyamsi, W. W., Blanc, P., Dumortier, D., Mouangue, R., Arola, A., & Halounova, L. (2021). Analysis of aerosol optical depth from sun photometer at Shouxian, China. Atmosphere, 13(9), 1–25. https://doi.org/10.3390/atmos13030372.
Xun, L., Lu, H., Qian, C., Zhang, Y., Lyu, S., Li, X., & Bărbulescu, A. (2022). On the Spatio-Temporal Characteristics of Aerosol Optical Depth in the Arabian Gulf Zone. Atmosphere, 13(9), 857. https://doi.org/10.3390/atmos13060857.
Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Ström, J., Henne, S., Yttri, K. E., Baltensperger, U., & Weingartner, E. (2010). Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. Atmospheric Chemistry and Physics, 10(19659), 3875–3890. https://doi.org/10.5194/acpd-10-3659-2010.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., & Baltensperger, U. (2013). Effects of Relative Humidity on Aerosol Light Scattering: results from different European sites. Atmospheric Chemistry and Physics, 13(21), 10609–10631. https://doi.org/10.5194/acp-13-10609-2013.
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.