Phytochemical, Metabolite Compound, and Antioxidant Activity of Clinacanthus nutans Leaf Extract from Indonesia

Nurlaili Susanti, Arifa Mustika, Junaidi Khotib, Roihatul Muti’ah, Maftuchah Rochmanti

Abstract

The antioxidant properties from medicinal plants have protective effects against oxidative stress-linked diseases. Their antioxidant capacities are related to phenolic compounds, including phenols and flavonoids. Clinacanthus nutans, a native to Asia, including Malaysia, Thailand, and Indonesia, are used for treating diabetes and other diseases, but the exploration of the plant in Indonesia is still limited. Therefore, this study aimed to reveal the phytochemical constituents, metabolic compounds, and antioxidant activity of C. nutans extracts. Dried leaf powder was extracted with 70% ethanol and aqueous, each extract was subjected to qualitative phytochemical screening. Subsequently, total phenolic and flavonoid content was calculated using Folin-Ciocalteu and AlCl3 colorimetric assay. The antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The profiles of phenolic and flavonoid compounds of 70% ethanolic extract were investigated by LC MS/MS. Phytochemical screening showed that the extracts contain phenolic, flavonoid, tannin, and saponin. The total phenolic content of the 70% ethanol and aqueous extract was 4.14±1.9% mgGAE/g and 3.89±3.2% mgGAE/g, respectively. Meanwhile, the total flavonoid content obtained was 0.19±1.0% mgQE/g and 0.03±0.5% mgQE/g for 70% ethanol and aqueous extracts, respectively. Both extracts showed high antioxidant activity, with DPPH IC50 30.57 ????g/mL for 70% ethanol and 37.24 ????g/mL for aqueous extract. LC-MS/MS analysis of 70% ethanol extract revealed 5 phenolic and 3 flavonoid compounds, where DL-glutamic monohydrate and Boesenbergin B were the most dominant based on the percentage of area under the curve. C. nutans originating from Indonesia can be a good source of natural antioxidants because 70% ethanol and aqueous extract show high phytochemical content and antioxidant activity.

References

Adwas, A. A., A. Elsayed, A. Azab, and F. Quwaydir (2019). Oxidative Stress and Antioxidant Mechanisms In Human Body. Journal of Applied Biotechnology and Bioengineering, 6(1); 43–47

Altemimi, A., N. Lakhssassi, A. Baharlouei, D. G. Watson, and D. A. Lightfoot (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(4); 42

Banjarnahor, S. D. and N. Artanti (2014). Antioxidant Properties of Flavonoids. Medical Journal of Indonesia, 23(4); 239–44

Bhat, A. H., K. B. Dar, S. Anees, M. A. Zargar, A. Masood, M. A. So, and S. A. Ganie (2015). Oxidative Stress, Mitochondrial Dysfunction and Neurodegenerative Diseases; A Mechanistic Insight. Biomedicine & Pharmacotherapy, 74; 101–110

Colín González, A. L., R. A. Santana, C. A. Silva-Islas, M. E. Chánez-Cárdenas, A. Santamaría, and P. D. Maldonado (2012). The Antioxidant Mechanisms Underlying The Aged Garlic Extract-and S-allylcysteine-induced Protection. Oxidative Medicine and Cellular Longevity, 2012

Dai, J. and R. J. Mumper (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10); 7313–7352

Danwilai, K., J. Konmun, B.-o. Sripanidkulchai, and S. Subongkot (2017). Antioxidant Activity of Ginger Extract As A Daily Supplement In Cancer Patients Receiving Adjuvant Chemotherapy: A Pilot Study. Cancer Management and Research, 9; 11

Dzah, C. S., Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, and H. Ma (2020). The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Bioscience, 35; 100547
El Sayed, M. M., M. M. El Hashash, H. R. Mohamed, and

E. E. S. Abdel Lateef (2015). Phytochemical Investigation and In Vitro Antioxidant Activity of Different Leaf Extracts of Salix Mucronata Thunb. Journal of Applied Pharmaceutical Science, 5(12); 080–085

Forni, C., F. Facchiano, M. Bartoli, S. Pieretti, A. Facchiano, D. D’Arcangelo, S. Norelli, G. Valle, R. Nisini, and S. Beninati (2019). Benecial Role Of Phytochemicals on Oxidative Stress and Age-related Diseases. BioMed research international, 2019

Foti, M. C. (2015). Use and Abuse of the DPPH• Radical. Journal of Agricultural and Food Chemistry, 63(40); 8765–8776

Ghasemzadeh, A., A. Nasiri, H. Z. Jaafar, A. Baghdadi, and I. Ahmad (2014). Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (clinacanthus Nutans L.) In Relation to Plant Age. Molecules, 19(11); 17632–17648

Guchu, B. M., A. K. Machocho, S. K. Mwihia, and M. P. Ngugi (2020). In Vitro Antioxidant Activities of Methanolic Extracts of Caesalpinia Volkensii Harms., Vernonia Lasiopus O. Hom., and Acacia Hockii De Wild. Evidence-based Complementary and Alternative Medicine: eCAM, 2020

Harborne, A. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media

Hossain, M., M. Arafat, M. Alam, and M. Hossain (2021). Effect of Solvent Types on The Antioxidant Activity and Total Flavonoids of Some Bangladeshi Legumes. Food Res, 5(4); 329–335

Hrelia, S. and C. Angeloni (2020). New Mechanisms of Action of Natural Antioxidants in Health and Disease

Isa, N., S. Abdelwahab, S. Mohan, A. Abdul, M. Sukari, M. Taha, S. Syam, P. Narrima, S. C. Cheah, S. Ahmad, et al. (2012). In Vitro Anti inflammatory, Cytotoxic and Antioxidant Activities of Boesenbergin A, A Chalcone Isolated From Boesenbergia Rotunda (l.)(ngerroot). Brazilian Journal of Medical and Biological Research, 45; 524–530

Ismail, N. Z., H. Arsad, M. R. Samian, and M. R. Hamdan (2017). Determination of Phenolic and Flavonoid Contents, Antioxidant Activities and Gc-ms Analysis of Clinacanthus Nutans (acanthaceae) in Dierent Locations. AGRIVITA, Journal of Agricultural Science, 39(3); 335-344

Ismail, N. Z., Z. Md Toha, M. Muhamad, N. N. S. Nik Mohamed Kamal, N. N. Mohamad Zain, and H. Arsad (2020). Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus Nutans Leaf Extracts. Molecules, 25(9); 2067

Johnson, A. J., A. Kumar, S. A. Rasheed, S. P. Chandrika, A. Chandrasekhar, S. Baby, and A. Subramoniam (2010). Antipyretic, Analgesic, Anti-inflammatory and Antioxidant Activities of Two Major Chromenes From Melicope Lunuankenda. Journal of Ethnopharmacology, 130(2); 267–271

Kamarudin, M. N. A., M. M. R. Sarker, H. A. Kadir, and L. C. Ming (2017). Ethnopharmacological Uses, Phytochemistry, Biological Activities, and Therapeutic Applications of Clinacanthus Nutans (burm. F.) Lindau: A Comprehensive Review. Journal of Ethnopharmacology, 206; 245–266

Kamtekar, S., V. Keer, and V. Patil (2014). Estimation of Phenolic Content, Flavonoid Content, Antioxidant and Alpha Amylase Inhibitory Activity of Marketed Polyherbal Formulation. Journal of applied pharmaceutical Science, 4(9); 061–065

Khoo, L. W., S. Audrey Kow, M. T. Lee, C. P. Tan, K. Shaari, C. L. Tham, and F. Abas (2018). A Comprehensive Review on Phytochemistry and Pharmacological Activities of Clinacanthus Nutans (burm. F.) Lindau. Evidence-Based Complementary and Alternative Medicine, 2018

Khoo, L. W., A. Mediani, N. K. Z. Zolkeee, S. W. Leong, I. S. Ismail, A. Khatib, K. Shaari, and F. Abas (2015). Phytochemical Diversity of Clinacanthus Nutans Extracts and Their Bioactivity Correlations Elucidated By Nmr Based Metabolomics. Phytochemistry Letters, 14; 123–133

Kuhad, A., N. Tirkey, S. Pilkhwal, and K. Chopra (2006). 6- Gingerol Prevents Cisplatin-induced Acute Renal Failure In Rats. Biofactors, 26(3); 189–200

Le, K. T., J. J. Bandolik, M. U. Kassack, K. R. Wood, C. Paetzold, M. S. Appelhans, and C. M. Passreiter (2021). New Acetophenones and Chromenes From the Leaves Of Meli-cope Barbigera A. Gray. Molecules, 26(3); 688

Li, A. N., S. Li, Y. J. Zhang, X. R. Xu, Y. M. Chen, and H. B. Li (2014). Resources and Biological Activities of Natural Polyphenols. Nutrients, 6(12); 6020–6047

Mahmoud, A. M., F. L. Wilkinson, A. P. Lightfoot, J. M. Dos Santos, and M. A. Sandhu (2021). The Role of Natural and Synthetic Antioxidants in Modulating Oxidative Stress in Drug-Induced Injury and Metabolic Disorders 2020

Marjoni, M. and A. Zulsa (2017). Antioxidant Activity Of Methanol Extract/fractions of Senggani Leaves (Melastoma Candidum D. Don). Pharmaceutica Analytica Acta, 8(8); 1–6

Martins, N., L. Barros, and I. C. Ferreira (2016). In Vivo Antioxidant Activity of Phenolic Compounds: Facts and Gaps. Trends in Food Science & Technology, 48; 1–12

Munteanu, I. G. and C. Apetrei (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7); 3380

Pourreza, N. (2013). Phenolic Compounds as Potential Antioxidant

Rodrigues, L. G. G., S. Mazzutti, L. Vitali, G. A. Micke, and S. R. S. Ferreira (2019). Recovery of Bioactive Phenolic Compounds From Papaya Seeds Agroindustrial Residue Using Subcritical Water Extraction. Biocatalysis and Agricultural Biotechnology, 22; 101367

Santo, A., H. Zhu, and Y. R. Li (2016). Free Radicals: From Health to Disease. React. Oxyg. Species, 2; 245–263

Shahidi, F. and P. Ambigaipalan (2015). Phenolics and Polyphenolics In Foods, Beverages and Spices: Antioxidant Activity and Health Effects. Journal of Functional Foods, 18; 820–897

Solihah, I., M. Mardiyanto, S. Fertilita, H. Herlina, and O. Charmila (2018). The Standardization of Ethanolic Extract of Tahongai Leaves (Kleinhovia hospita L.). Science and Technology Indonesia, 3(1); 14–18

Sun, Y. and W. Wang (2016). Molecular Detection and In Vitro Antioxidant Activity Of S-allyl-l-cysteine (sac) Extracted From Allium Sativum. Cellular and Molecular Biology, 62(7); 85–89

Syarifah, S., E. Elta, H. Widjajanti, A. Setiawan, and A. R. Kurniawati (2021). Diversity Of Endophytic Fungi From The Root Bark Of Syzygium Zeylanicum, and The Antibacterial Activity of Fungal Extracts, and Secondary Metabolite. Biodiversitas Journal of Biological Diversity, 22(10); 4572-4582

Tan, B. L., M. E. Norhaizan, W.-P.-P. Liew, and H. Sulaiman Rahman (2018). Antioxidant and Oxidative Stress: A Mutual Interplay In Age related Diseases. Frontiers in Pharmacology, 9; 1162

Thongrakard, V. and T. Tencomnao (2010). Modulatory Effects of Thai Medicinal Plant Extract on Proinammatory Cytokines-induced Apoptosis in Human Keratinocyte Hacat Cells. African Journal of Biotechnology, 9(31); 4999–5003

Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser (2007). Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39(1); 44–84

Widyawaruyanti, A., M. Tanjung, A. A. Permanasari, R. Saputri, L. Tumewu, M. Adianti, C. Aoki-Utsubo, H. Hotta, A. F. Had, and T. S. Wahyuni (2021). Alkaloid and Benzopyran Compounds of Melicope Latifolia Fruit Exhibit Anti hepatitis C Virus Activities. BMC Complementary Medicine and Therapies, 21(1); 1–9

Yang, E.-J. and K.-S. Song (2021). The Ameliorative Effects of Capsidiol Isolated From Elicited Capsicum Annuum on Mouse Splenocyte Immune Responses and Neuroinammation. Phytotherapy Research, 35(3); 1597–1608

Yildirim, A., A. Şen, F. GÖĞer, Ö. B. Özakpinar, and L. BİtİŞ (2022). In Vitro Antiproliferative, Antioxidant, Anti-inflammatory Activities and Phenolic Profile of Centaurea Saligna (k. Koch) Wagenitz. Journal of Research in Pharmacy, 26(1); 1180-1190

Authors

Nurlaili Susanti
Arifa Mustika
arifa-m@fk.unair.ac.id (Primary Contact)
Junaidi Khotib
Roihatul Muti’ah
Maftuchah Rochmanti
Susanti, N. ., Mustika, A., Khotib, J. ., Muti’ah, R. ., & Rochmanti, M. . (2023). Phytochemical, Metabolite Compound, and Antioxidant Activity of Clinacanthus nutans Leaf Extract from Indonesia. Science and Technology Indonesia, 8(1), 38–44. https://doi.org/10.26554/sti.2023.8.1.38-44

Article Details