The Effects of Reactive Oxygen and Nitrogen Species (RONS) Produced by Surface Dielectric Barrier Discharge (SDBD) Non-Thermal Plasma with Treatment Time and Distance Variations to Kill Escherichia coli

Renaldo Apriandi Kasa, Unggul Pundjung Juswono, Dionysius J. D. H. Santjojo

Abstract

Research on the inactivation of Escherichia coli causing diarrheal disease using non-thermal plasma SDBD has been carried out. SDBD is a new technique for non-thermal plasma generation with several advantages: low power generation, comprehensive treatment area coverage, and reducing the potential effects of burning and drying tissue. This study aimed to analyze the effect of treatment time variations, namely 0 as control, 60, 75, 90, 105, and 120 seconds and treatment distance variations of 3, 6, 9, 12, and 15 mm of non-thermal plasma treatment of SDBD on E. coli. The results of the non-thermal plasma SDBD treatment with variations in time and distance showed that the longer the treatment time, the more bacterial cells died. Colony counts decreased to 4.33 x 107 CFU/mL compared to the control, 409 x 107 CFU/mL, with a treatment time variation of 120 seconds, yielding the best treatment results. At the same time, the results of the treatment for variations in the non-thermal plasma distance of SDBD showed that the smaller the treatment distance, the greater the bacterial death rate, with the best treatment results at a 3 mm treatment interval, with colony counts of 8 x 107 CFU/mL, compared to 409 x 107 CFU/mL in control. Based on these results, SDBD non-thermal plasma treatment can be used to inactivate or kill bacteria with effectiveness in killing bacteria depending on the length of treatment time and the distance of treatment.

References

Adhikari, B. C., P. Lamichhane, J. S. Lim, L. N. Nguyen, and E. H. Choi (2021). Generation of Reactive Species by Naturally Sucked Air in the Ar Plasma Jet. Results in Physics, 30; 104863

Akter, M., D. K. Yadav, S. H. Ki, E. H. Choi, and I. Han (2020). Inactivation of Infectious Bacteria Using Nonthermal Bio-compatible Plasma Cabinet Sterilizer. International Journal of Molecular Sciences, 21(21); 8321

Amalda, E. C., F. Alhamidah, Y. Oktanella, and M. Khuzain (2020). Kajian Artikel: Potensi Plasma Non Termal Sebagai Kandidat Terapi Mastitis Subklinis. VITEK: Bidang Kedokteran Hewan, 10; 1–9

Dhungana, S., R. P. Guragain, H. Baniya, G. Panta, G. K. Chhetri, and D. Subedi (2020). Electrical and Optical Characterization of Gliding Arc Discharge (GAD) Operated at Line Frequency (50 Hz) Power Supply. Journal of Nepal Physical Society, 6(2); 26–33

Feng, T. and J. Wang (2020). Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria As Probiotic: A Systematic Review. Gut Microbes, 12(1); 1801944

Hati, S., S. Mandal, S. Vij, P. Minz, S. Basu, Y. Khetra, D. Yadav, and M. Dahiya (2012). Nonthermal Plasma Technology and Its Potential
Applications Against Foodborne Microorganisms. Journal of Food Processing and Preservation, 36(6); 518–524

Hosseini, S. I., S. Mohsenimehr, J. Hadian, M. Ghorbanpour, and B. Shokri (2018). Physico-chemical Induced Modification of Seed Germination and Early Development in Artichoke (Cynara scolymus L.) Using Low Energy Plasma Technology. Physics of Plasmas, 25(1); 013525

Kemenkes RI (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9); 1689–1699 (in Indonesia)

Klämp, T. G., G. Isbary, T. Shimizu, Y. F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morll, and H. U. Schmidt (2012). Cold Atmospheric Air Plasma Sterilization Against Spores and Other Microorganisms of Clinical Interest. Applied and Environmental Microbiology, 78(15); 5077–5082

Kristanti, Y. and D. Dessy (2012). Pengaruh Ozonated Water Sebagai Antiseptik Dalam Menghambat Pertumbuhan Staphilococcus Aureus (in Vitro). Majalah Kedokteran Gigi Indonesia, 19(1); 25–28 (in Indonesia)

Levy, K., S. M. Smith, and E. J. Carlton (2018). Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions. Current Environmental Health Reports, 5(2); 272–282

López, M., T. Calvo, M. Prieto, R. Múgica Vidal, I. Muro Fraguas, F. Alba-Elías, and A. Alvarez-Ordóñez (2019). A Review on Non-thermal Atmospheric Plasma For Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology, 10; 622

Misra, N., K. Keener, P. Bourke, and P. Cullen (2015). Generation of In-package Cold Plasma and Efficacy Assessment Using Methylene Blue. Plasma Chemistry and Plasma Processing, 35(6); 1043–1056

Moisan, M., J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and Y. L’H (2001). Low Temperature Sterilization Using Gas Plasmas: A Review of the Experiments and An Analysis of the Inactivation Mechanisms. International Journal of Pharmaceutics, 226(1-2); 1–21

Morent, R. and N. De Geyter (2011). Inactivation of Bacteria by Non-thermal Plasmas. Biomedical Engineering-Frontiers and Challenges; 25–50

Naz, M., S. Shukrullah, S. Rehman, Y. Khan, A. Al Arainy, and R. Meer (2021). Optical Characterization of Non-thermal Plasma Jet Energy Carriers for Effective Catalytic Processing of Industrial Wastewaters. Scientific Reports, 11(1); 1–13

Pai, K., C. Timmons, K. D. Roehm, A. Ngo, S. S. Narayanan, A. Ramachandran, J. D. Jacob, L. M. Ma, and S. V. Madihally (2018). Investigation of The Roles of Plasma Species Generated by Surface Dielectric Barrier Discharge. Scientific Reports, 8(1); 1–13

Park, B. J., D. Lee, J. C. Park, I. S. Lee, K. Y. Lee, S. Hyun, M. S. Chun, and K. H. Chung (2003). Sterilization Using A Microwave-induced Argon Plasma System at Atmospheric Pressure. Physics of Plasmas, 10(11); 4539–4544

Prabhakara, G. (2010). Health Statistics (Health Information System). Short Textbook of Preventive and Social Medicine; 28–28

Puligundla, P. and C. Mok (2017). Potential Applications of Nonthermal Plasmas Against Biolm-associated Microorganisms In Vitro Journal of Applied Microbiology, 122(5); 1134–1148

Putra, V. G. V., I. Irwan, I. Purnama, J. N. Mohamad, and Y. Yusuf (2021). A Study of Anti-Radiation Weaving Fabric with Plasma Corona Treatment. Indonesian Journal of Applied Physics, 11(1); 59–67

Ragil, D. and Y. Dyah (2017). Hubungan Antara Pengetahuan dan Kebiasaan Mencuci Tangan Pengasuh Dengan Kejadian Diare Pada Balita. Jurnal of Health Education, 2(1); 39–46 (in Indonesia)

Sarangapani, C., N. Misra, V. Milosavljevic, P. Bourke, F. O’Regan, and P. Cullen (2016). Pesticide Degradation in Water Using Atmospheric Air Cold Plasma. Journal of Water Process Engineering, 9; 225–232

Scholtz, V., E. Vaňková, P. Kašparová, R. Premanath, I. Karunasagar, and J. Julák (2021). Non-thermal Plasma Treatment of ESKAPE Pathogens: a Review. Frontiers in Microbiology, 12; 2919

Šimončicová, J., S. Kryštofová, V. Medvecká, K. Ďurišová, and B. Kaliňáková (2019). Technical Applications of Plasma Treatments: Current State and Perspectives. Applied Microbiology and Biotechnology, 103(13); 5117–5129

Tian, Y., P. Sun, H. Wu, N. Bai, R. Wang, W. Zhu, J. Zhang, and F. Liu (2010). Inactivation of Staphylococcus aureus and Enterococcus faecalis by A Direct-current, Cold Atmospheric pressure Air Plasma Microjet. Journal of Biomedical Research, 24(4); 264–269

Wiegand, C., O. Beier, K. Horn, A. Pfuch, T. Tölke, U. C. Hipler, and A. Schimanski (2014). Antimicrobial Impact of Cold Atmospheric Pressure Plasma on Medical Critical Yeasts and Bacteria Cultures. Skin Pharmacology and Physiology, 27(1); 25–35

Xu, Z., C. Cheng, J. Shen, Y. Lan, S. Hu, W. Han, and P. K. Chu (2018). In Vitro Antimicrobial Effects and Mechanisms of Direct Current Air liquid Discharge Plasma on Planktonic Staphylococcus aureus and Escherichia coli in Liquids. Bioelectrochemistry, 121; 125–134

Zheng, C., Y. Kou, Z. Liu, C. Li, Y. Huang, and K. Yan (2016). Rapid Disinfection Performance of A Touchable Pulsed Sdbd Nonthermal Plasma. IEEE Transactions on Plasma Science, 44(11); 2667–2672

Authors

Renaldo Apriandi Kasa
randi−kasa@student.ub.ac.id (Primary Contact)
Unggul Pundjung Juswono
Dionysius J. D. H. Santjojo
Kasa, R. A., Juswono, U. P., & Santjojo, D. J. D. H. . (2023). The Effects of Reactive Oxygen and Nitrogen Species (RONS) Produced by Surface Dielectric Barrier Discharge (SDBD) Non-Thermal Plasma with Treatment Time and Distance Variations to Kill Escherichia coli. Science and Technology Indonesia, 8(1), 45–51. https://doi.org/10.26554/sti.2023.8.1.45-51

Article Details