The Utilization of Candlenut Shell-Based Activated Charcoal as the Electrode of Capacitive Deionization (CDI) for Seawater Desalination

Muhammad Anas, Mardiana Napirah, Wa Ode Sitti Ilmawati, Husein, Amiruddin Takda, Like Herawati, Ima, Karmila Sari

Abstract

Activated carbon or activated charcoal is one of the best materials that can be used as a constituent of CDI electrodes, not only because of its various advantageous properties but also because it can be sourced abundantly from plant waste. This research aims to determine the effect of the thickness of the candlenut shell activated charcoal electrode and the particle size of the activated carbon used on the capacitive deionization (CDI) performance in seawater desalination. Candlenut shell-based activated charcoal is obtained in three stages, namely preparation, carbonization, and activation. The carbonization stage was done by using a pyrolysis reactor at a temperature of 400°C for 8 hours. The activation was done with the activator of H3PO4 67%. The variation of thickness was 6 mm, 8 mm, 10 mm, and 15 mm while the variation of particle size was 60 mesh, 80 mesh, 100 mesh, and 200 mesh. The results showed that the higher capacitance was obtained with the thinner electrodes, where the best value was the thinnest electrode, 6 mm, which produced the highest capacitance, 122.96 nF. For the desalination of seawater, it is shown that the finest particle/smallest particle size will result in the best desalination performance, where 200 mesh particle size will result in the decrease of salinity from 34% to 4%. That is 88.23% decrease in salinity. Therefore, the using of candlenut shell-based activated carbon as the electrode in CDI is proven to be able to obtain good performance in seawater desalination.

References

Adorna Jr, J., M. Borines, and R.-A. Doong (2020). Coconut Shell Derived Activated Biochar Manganese Dioxide Nanocomposites for High Performance Capacitive Deionization. Desalination, 492; 114602

Adrianto, N., V. Mongkito, S. Fayanto, M. Anas, and R. Eso (2019). Characterization of Activated Charcoal from Sugar Palm Bunches (Arengga pinnata (Wurmb) Merr) and the Application As Adsorbent Lead (pb), Copper (Cu) and Chrome (Cr) in Solution. In Journal of Physics: Conference Series, volume 1321. IOP Publishing, page 022002

Adrianto, N., A. M. Panre, R. M. Tumbelaka, and M. Anas (2021). The Microwave Activation Effect on the Surface Morphology of Activated Charcoal from Arenga pinnata Merr Bunches. In AIP Conference Proceedings, volume 2338. AIP Publishing

Alkhadra, M. A., X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. De Souza, N. Kim, and M. Tedesco (2022). Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews, 122(16); 13547–13635

Bharath, G., A. Hai, K. Rambabu, D. Savariraj, Y. Ibrahim, and F. Banat (2020). The Fabrication of Activated Carbon and Metal-Carbide 2D Framework-Based Asymmetric Electrodes for the Capacitive Deionization of Cr(VI) Ions Toward Industrial Wastewater Remediation. Environmental Science: Water Research & Technology, 6(2); 351–361

Chen, B., A. Feng, R. Deng, K. Liu, Y. Yu, and L. Song (2020). MXene As a Cation-Selective Cathode Material for Asymmetric Capacitive Deionization. ACS Applied Materials & Interfaces, 12(12); 13750–13758

Chen, Z., X. Xu, Z. Ding, K. Wang, X. Sun, T. Lu, M. Konarova, M. Eguchi, J. G. Shapter, L. Pan, et al. (2021). Ti3C2 Mxenes-Derived NaTi2(PO4)3/MXene Nanohybrid for Fast and Efficient Hybrid Capacitive Deionization Performance. Chemical Engineering Journal, 407; 127148

Cheng, Y., Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, and Y. Zhao (2019). A Review of Modification of Carbon Electrode Material in Capacitive Deionization. RSC Advances, 9(42); 24401– 24419

Dubey, P., V. Shrivastav, P. H. Maheshwari, and S. Sundriyal (2020). Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon, 170; 1–29

Forouzandeh, P., V. Kumaravel, and S. C. Pillai (2020). Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10(9); 969

Gamaethiralalage, J., K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. Suss, P. Liang, P. Biesheuvel, R. L. Zornitta, and L. De Smet (2021). Recent Advances in Ion Selectivity with Capacitive Deionization. Energy & Environmental Science, 14(3); 1095–1120

Gong, S., H. Wang, Z. Zhu, Q. Bai, and C. Wang (2019). Comprehensive Utilization of Seawater in China: A Description of the Present Situation, Restrictive Factors and Potential Countermeasures. Water, 11(2); 397

He, C., Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, and B. A. Bryan (2021). Future Global Urban Water Scarcity and Potential Solutions. Nature Communications, 12(1); 4667

Huang, Z. H., Z. Yang, F. Kang, and M. Inagaki (2017). Carbon Electrodes for Capacitive Deionization. Journal of Materials Chemistry A, 5(2); 470–496

Huynh, L. T. N., T. N. Tran, T. T. N. Ho, X. H. Le, V. H. Le, and T. H. Nguyen (2022). Enhanced Electrosorption of NaCl and Nickel (II) in Capacitive Deionization by CO2 Activation Coconut-Shell Activated Carbon. Carbon Letters, 32(6); 1531–1540

Jiang, Y., S. I. Alhassan, D. Wei, and H. Wang (2020). A Review of Battery Materials As CDI Electrodes for Desalination. Water, 12(11); 3030

Kalfa, A., B. Shapira, A. Shopin, I. Cohen, E. Avraham, and D. Aurbach (2020). Capacitive Deionization for Wastewater Treatment: Opportunities and Challenges. Chemosphere, 241; 125003

Kim, M., H. Lim, X. Xu, M. S. A. Hossain, J. Na, N. N. Awaludin, J. Shah, L. K. Shrestha, K. Ariga, and A. K. Nanjundan (2021). Sorghum Biomass-Derived Porous Carbon Electrodes for Capacitive Deionization and Energy Storage. Microporous and Mesoporous Materials, 312; 110757

Klein, A. P., E. S. Beach, J. W. Emerson, and J. B. Zimmerman (2010). Accelerated Solvent Extraction of Lignin from Aleurites moluccana (Candlenut) Nutshells. Journal of Agricultural and Food Chemistry, 58(18); 10045–10048

Köse, D. and H. Necefoğlu (2008). Synthesis and Characterization of bis(Nicotinamide) m-Hydroxybenzoate Complexes of Co(II), Ni(II), Cu(II) and Zn(II). Journal of Thermal Analysis and Calorimetry, 93; 509–514

Kumar, S., G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, and J. H. Lee (2021). 0D to 3D Carbon-Based Networks Combined with Pseudocapacitive Electrode Material for High Energy Density Supercapacitor: A Review. Chemical Engineering Journal, 403; 126352

Kushwaha, R., D. Bhaskar, Sonam, and D. Mohan (2020). An Experimental Study on Some Parameters for Defluoridation Using Capacitive Deionization with Carbon Electrodes. Journal of the Indian Chemical Society, 97(3); 368–372

Kyaw, H. H., S. M. Al-Mashaikhi, M. T. Z. Myint, S. Al-Harthi, E. S. I. El-Shafey, and M. Al-Abri (2021). Activated Carbon Derived from the Date Palm Leaflets As Multifunctional Electrodes in Capacitive Deionization System. Chemical Engineering and Processing-Process Intensification, 161; 108311

Lebedeva, D., S. Hijmans, A. P. Mathew, E. Subbotina, and J. S. Samec (2022). Waste-to-Fuel Approach: Valorization of Lignin from Coconut Coir Pith. ACS Agricultural Science & Technology, 2(2); 349–358

Li, L., C. Wang, K. Feng, D. Huang, K. Wang, Y. Li, and F. Jiang (2021). Kesterite Cu2ZnSn4 Thin-Film Solar Water-Splitting Photovoltaics for Solar Seawater Desalination. Cell Reports Physical Science, 2(6); 100468

Li, Z., S. Gadipelli, H. Li, C. A. Howard, D. J. Brett, P. R. Shearing, Z. Guo, I. P. Parkin, and F. Li (2020). Tuning the Interlayer Spacing of Graphene Laminate Films for Efficient Pore Utilization Towards Compact Capacitive Energy Storage. Nature Energy, 5(2); 160–168

Lin, S., H. Zhao, L. Zhu, T. He, S. Chen, C. Gao, and L. Zhang (2021). Seawater Desalination Technology and Engineering in China: A Review. Desalination, 498; 114728

Liu, G., L. Qiu, H. Deng, J. Wang, L. Yao, and L. Deng (2020). Ultrahigh Surface Area Carbon Nanosheets Derived from Lotus Leaf with Super Capacities for Capacitive Deionization and Dye Adsorption. Applied Surface Science, 524; 146485

Liu, J., J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z. X. Shen (2018). Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 5(1); 1700322

Luciano, M. A., H. Ribeiro, G. E. Bruch, and G. G. Silva (2020). Efficiency of Capacitive Deionization Using Carbon Materials Based Electrodes for Water Desalination. Journal of Electroanalytical Chemistry, 859; 113840

McLucas, J. and C. Broomfield (2010). Circuit Measures Capacitance or Inductance Mohammadi, F., M. Sahraei-Ardakani, Y. Al-Abdullah, and G. T. Heydt (2020). Cost-Benefit Analysis of Desalination: A Power Market Opportunity. Electric Power Components and Systems, 48(11); 1091–1101

Mohtashami, S.-A., N. A. Kolur, T. Kaghazchi, R. AsadiKesheh, and M. Soleimani (2018). Optimization of Sugarcane Bagasse Activation to Achieve Adsorbent with High Affinity Towards Phenol. Turkish Journal of Chemistry, 42(6); 1720–1735

Naseer, M. N., A. A. Zaidi, H. Khan, S. Kumar, M. T. B. Owais, Y. A. Wahab, K. Dutta, J. Jaafar, M. Uzair, and M. R. Johan (2022). Desalination Technology for Energy-Efficient and Low-Cost Water Production: A Bibliometric Analysis. Green Processing and Synthesis, 11(1); 306–315

Qin, M., A. Deshmukh, R. Epsztein, S. K. Patel, O. M. Owoseni, W. S. Walker, and M. Elimelech (2019). Comparison of Energy Consumption in Desalination by Capacitive Deionization and Reverse Osmosis. Desalination, 455; 100–114

Rosado, M. J., J. Rencoret, G. Marques, A. Gutiérrez, and J. C. Del Río (2021). Structural Characteristics of the Guaiacyl-Rich Lignins from Rice (Oryza sativa L.) Husks and Straw. Frontiers in Plant Science, 12; 640475

Samejo, B. A., N. Q. Abro, N. Memon, S. Poddar, and A. Habib (2023). Waste-Derived Stable Carbon Electrodes for Capacitive Deionization Using Poly (Vinyl Alcohol)- Glutaraldehyde As Binder. Biomass Conversion and Biorefinery; 1–14

Sufiani, O., H. Tanaka, K. Teshima, R. L. Machunda, and Y. A. Jande (2020). Enhanced Electrosorption Capacity of Activated Carbon Electrodes for Deionized Water Production through Capacitive Deionization. Separation and Purification Technology, 247; 116998

Tan, G., S. Lu, N. Xu, D. Gao, and X. Zhu (2020). Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO2 Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. Environmental Science & Technology, 54(9); 5843–5852

Thangavelu, K., R. Desikan, O. P. Taran, and S. Uthandi (2018). Delignification of Corncob Via Combined Hydrodynamic Cavitation and Enzymatic Pretreatment: Process Optimization by Response Surface Methodology. Biotechnology for Biofuels, 11(1); 1–13

Tian, S., X. Zhang, and Z. Zhang (2020). Capacitive Deionization with MoS2/g-C3N4 Electrodes. Desalination, 479; 114348

Torkamanzadeh, M., L. Wang, Y. Zhang, O. Budak, P. Srimuk, and V. Presser (2020). MXene/activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & Interfaces, 12(23); 26013–26025

Wang, Q. and J. Sarkar (2018). Pyrolysis Behaviors of Waste Coconut Shell and Husk Biomasses. Towards Energy Sustainability, 3(1); 34–43

Wang, W., K. Li, G. Song, M. Zhou, and P. Tan (2022). Activated Carbon Aerogel as an Electrode with High Specific Capacitance for Capacitive Deionization. Processes, 10(12); 2330

Xi, W., Y. Zhang, R. Wang, Y. Gong, B. He, H. Wang, J. Guo, F. Jiao, and J. Jin (2023). The Effect of Electrode Thickness and Electrode/electrolyte Interface on the Capacitive Deionization Behavior of the Ti3C2Tx Mxene Electrodes. Journal of Alloys and Compounds, 947; 169701

Xing, W., J. Liang, W. Tang, D. He, M. Yan, X. Wang, Y. Luo, N. Tang, and M. Huang (2020). Versatile Applications of Capacitive Deionization (CDI)-based Technologies. Desalination, 482; 114390

Yang, Z., R. Gleisner, D. H. Mann, J. Xu, J. Jiang, and J. Zhu (2020). Lignin Based Activated Carbon Using H3PO4 Activation. Polymers, 12(12); 2829

Zapata-Sierra, A., M. Cascajares, A. Alcayde, and F. Manzano-Agugliaro (2021). Worldwide Research Trends on Desalination. Desalination, 519; 115305

Zhang, B., A. Boretti, and S. Castelletto (2022). Mxene Pseudocapacitive Electrode Material for Capacitive Deionization. Chemical Engineering Journal, 435; 134959

Zhang, C., D. He, J. Ma, W. Tang, and T. D. Waite (2018). Faradaic Reactions in Capacitive Deionization (CDI)-problems and Possibilities: A Review. Water Research, 128; 314–330

Zhao, X., H. Wei, H. Zhao, Y. Wang, and N. Tang (2020). Electrode Materials for Capacitive Deionization: A Review. Journal of Electroanalytical Chemistry, 873; 114416

Authors

Muhammad Anas
Mardiana Napirah
mardiana.napirah@uho.ac.id (Primary Contact)
Wa Ode Sitti Ilmawati
Husein
Amiruddin Takda
Like Herawati
Ima
Karmila Sari
Anas, M., Napirah, M., Ilmawati, W. O. S., Husein, Takda, A., Herawati, L., Ima, & Sari, K. (2024). The Utilization of Candlenut Shell-Based Activated Charcoal as the Electrode of Capacitive Deionization (CDI) for Seawater Desalination. Science and Technology Indonesia, 9(1), 86–93. https://doi.org/10.26554/sti.2024.9.1.86-93

Article Details