The Addition of Red Dragon Fruit and Lemon Peels for the Improvement of Fermented Beverage Products

Sofi Nabila, Arie Srihardyastutie, Sasangka Prasetyawan, Aulanni’am, Rurini Retnowati


Coconut water is part of the coconut fruit, that has bioactive compounds that are thought to own high inhibitor activity to the presence of tannin compounds. However, this compound is antinutritional because it can interfere with macromolecule out there within the body. Considering chance of tannins, these parts are often reduced by fermentation techniques using lactic acid bacteria. This analysis aims to review the addition of dragon fruit and lemon peels in fermentation coconut water using lactic acid bacteria in order to reduce tannin levels and its potential capability as antioxidants. Coconut water fermented drink was prepared by fermentation technique using lactic acid bacteria with the addition of variations in mass of dragon fruit peel and lemon peel consisting of 5 treatments. The optimum conditions for fermentation of coconut water were determined from the decrease in tannin levels, total acid, and the highest total lactic acid bacteria. The optimum conditions for fermentation of coconut water were then tested using an HPLC instrument. Finally, the antioxidantactivity was tested using the FRAP (Ferric Reducing Antioxidant Power) method. The results showed that the addition of dragon fruit and lemon peels in fermented coconut water can reduce tannin levels, can increase total acid levels and the number of lactic acid bacteria formed in coconut water fermented drinks. The best proportion was obtained in the treatment of rasio of mass 1:2 resulted in the highest decrease in tannin content of 83.94 mg/100 g followed by a total acid value of 1.13% and the number of lactic acid bacteria was 8.4 × 107 CFU/mL. The HPLC chromatogram showed that fermented coconut water using lactic acid bacteria contained organic acid compounds such as lactic acid, acetic acid, and ascorbic acid. The highest antioxidant activity test was 82.37 mmgAAE/g. This study confirmed that the addition of dragon fruit and lemon peels affected the degradation of tannins and increased antioxidant activity during coconut water fermentation using lactic acid bacteria.


Ananda, T. D., A. Srihardyastutie, S. Prasetyawan, and A. Safitri (2019). Effect of Mixed Inoculums Volume and pH on Anti Nutritional Level in Cabbage Fermentation using Saccharomyces cerevisiae and Lactobacillus plantarum. Materials Science and Engineering, 546(6); 062004

Andersson, R. and B. Hedlund (1983). HPLC Analysis of Organic Acids in Lactic Acid Fermented Vegetables. Zeitschrift für Lebensmittel Untersuchung und Forschung, 176(6); 440–443

Anwar, . P. U., M. Z. (2018). Making Probiotic Drink of Young Coconut Water (Cocos nucifera L) with Starter Lactobacillus casei sub R-68. JOM Faperta, 5(1); 1–12

Azwar, A., H. Hisbullah, A. Irgi, W. Julyadi, A. Adisalamun, M. Mukhlishien, R. N. R. Nasrullah, A. Abubakar, M. Z. M. Zanil, and J. A. J. Ali (2022). Design of Control Loop Pairing in a UCT Bioreactor System. Jurnal Serambi Engineering, 7(1); 2577–2586

Gemede, H. F. and N. Ratta (2014). Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, 3(4); 284–289

Hassan, R. M., N. A. F. Zulrushdi, A. M. Yusoff, N. Ibrahim, and N. M. Nor (2018). Phytochemical Properties and Antimicrobial Activity of Natural Colorant Extracted from Mesocarp and Exocarp of Cocos nucifera. Journal of Nutritional Biology, 4(2); 236–243

Hendra, R., L. Masdeatresa, R. Abdulah, and Y. Haryani (2019). Antibacterial Activity of Red Dragon Peel (Hylocereus polyrhizus) Pigment. Journal of Physics: Conference Series, 1351(1); 012042

Izquierdo Llopart, A., A. Carretero, and J. Saurina (2020). Organic Acid Profiling by Liquid Chromatography for the Characterization of Base Vines and Sparkling Wines. Food Analytical Methods, 13(10); 1852–1866

Jiménez, N., M. Esteban Torres, J. M. Mancheño, B. de Las Rivas, and R. Muñoz (2014). Tannin Degradation by A Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains. Applied and Environmental Microbiology, 80(10); 2991–2997

Kang, W., L. Pan, C. Peng, L. Dong, S. Cao, H. Cheng, Y. Wang, C. Zhang, R. Gu, and J. Wang (2020). Isolation and Characterization of Lactic Acid Bacteria from Human Milk. Journal of Dairy Science, 103(11); 9980–9991

Kinanti, P. S. K., B. S. Amanto, and W. Atmaka (2014). Kajian Karakteristik Fisik dan Kimia Tepung Sorghumn (Sorghum bicolor L) Varietas Mandau Termodifikasi yang Dihasilkan dengan Variasi Konsentrasi dan Lama Perendaman Asam Laktat. Jurnal Teknosains Pangan, 3(1); 135–144 (in Indonesia)

Le, T. L., N. Huynh, and P. Quintela-Alonso (2021). Dragon Fruit: A Review of Health Benefits and Nutrients and its Sustainable Development under Climate Changes in Vietnam. Czech Journal of Food Sciences, 39(2); 71–94

Mahayothee, B., I. Koomyart, P. Khuwijitjaru, P. Siriwongwilaichat, M. Nagle, and J. Müller (2016). Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water and Meat at Different Maturity Stages. International Journal of Food Properties, 19(9); 2041–2051

Matsuda, M., Y. Hirose, M. Kanauchi, S. Hatanaka, and A. Totsuka (2016). Purification and Characteristics of Tannase Produced by Lactic Acid Bacteria, Lactobacillus plantarum H78. Journal of the American Society of Brewing Chemists, 74(4); 258–266

Medina López, S. V., C. M. Zuluaga Domínguez, J. P. Fernández Trujillo, and M. S. Hernández-Gómez (2022). Nonconventional Hydrocolloids’ Technological and Functional Potential for Food Applications. Foods, 11(3); 401

Mıdık, F., M. Tokatlı, S. Bağder Elmacı, and F. Özçelik (2020). Influence of Different Culture Conditions on Exopolysaccharide Production by Indigenous Lactic Acid Bacteria Isolated from Pickles. Archives of Microbiology, 202(4); 875–885

Mohan, A., N. Gutierrez Maddox, T. Meng, N. He, Y. Gao, Q. Shu, and S. Y. Quek (2021). Manuka Honey with Varying Levels of Active Manuka Factor (AMF) Ratings as An Anaerobic Fermentation Substrate for Limosilactobacillus reuteri Dpc16. Fermentation, 7(3); 128

Nurdyansyah, F. and U. H. A. Hasbullah (2018). Optimasi Fermentasi Asam Laktat oleh Lactobacillus casei Pada Media Fermentasi yang Disubtitusi Tepung Kulit Pisang. Journal of Biology, 11(1); 64–71 (in Indonesia)

Nurfuzianti, R. (2021). Pengaruh Proses Fermentasi Terhadap Kandungan Asam Laktat pada Makanan Fermentasi. Parapemikir: Jurnal Ilmiah Farmasi, 10(2); 1–6 (in Indonesia)

Parasthi, L. Y. E., D. N. Afifah, C. Nissa, and B. Panunggal (2020). Total Lactic Acid Bacteria and Antibacterial Activity in Yoghurt with Addition of Ananas comosus Merr. and Cinnamomum burmannii. Amerta Nutrition, 4(4); 257–264

Raharjo, D. and H. Haryoto (2019). Antioxidant Activity of Mangrove Sonneratia caseolaris L using the FRAP Method. International Summit on Science, Technology, and Humanity

Rizal, S., M. Erna, F. Nurainy, and A. R. Tambunan (2016). Karakteristik Probiotik Minuman Fermentasi Laktat Sari Buah Nanas dengan Variasi Jenis Bakteri Asam Laktat. Jurnal Kimia Terapan Indonesia, 18(01); 63–71 (in Indonesia)

Sakul, S., D. Rosyidi, L. E. Radiati, and P. Purwadi (2020). The Effect of Different Starter Cultures on the Fermentation of Yogurt Added with Aqueous Extract of White Oyster Mushroom (Pleurotus ostreatus). Jurnal Ilmu dan Teknologi Hasil Ternak (JITEK), 15(1); 46–51

Shang, Y.-F., H. Cao, Y.-L. Ma, C. Zhang, F. Ma, C.-X. Wang, X.-L. Ni, W.-J. Lee, and Z.-J. Wei (2019). Effect of Lactic Acid Bacteria Fermentation on Tannins Removal in Xuan Mugua Fruits. Food Chemistry, 274; 118–122

Silalahi, J., D. Nadarason, and Y. Silalahi (2018). The Effect of Storage Condition on Antioxidant Activity of Probiotics in Yoghurt Drinks. Asian Journal of Pharmaceutical and Clinical Research, 11(12); 2455–3891

Siti Thomas Zulaikhah, S. T. Z. (2019). Health Benefits of Tender Coconut Water (TCW). International Journal of Pharmaceutical Sciences and Research, 10(2); 474–480

Tkacz, K., J. Chmielewska, I. P. Turkiewicz, P. Nowicka, and A. Wojdyło (2020). Dynamics of Changes in Organic Acids, Sugars and Phenolic Compounds and Antioxidant Activity of Sea Buckthorn and Sea Buckthorn-apple Juices During Malolactic Fermentation. Food Chemistry, 332; 127382

Verni, M., V. Verardo, and C. G. Rizzello (2019). How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods, 8(9); 362

Zhao, Y. S., A. S. Eweys, J. Y. Zhang, Y. Zhu, J. Bai, O. M. Darwesh, H. B. Zhang, and X. Xiao (2021). Fermentation Affects the Antioxidant Activity of Plant-based Food Material Through the Release and Production of Bioactive Components. Antioxidants, 10(12); 2004

Zhong, Y. and F. Shahidi (2015). Methods for the Assessment of Antioxidant Activity in Foods. In Handbook of Antioxidants for Food Preservation. Elsevier, pages 287–333

Zhuo, L. C., A. S. K. Yong, R. Shapawi, and Y. H. Lin (2021). Effects of Fermented Lemon Peel Supplementation in Diet On Growth, Immune Responses, and Intestinal Morphology of Asian Sea Bass, Lates Calcarifer. Aquaculture Reports, 21; 100801

Ziska, R., A. Taufik, and D. Supriadi (2017). Uji Aktivitas Antimikroba dan Antioksidan dari Minuman Probiotik Hasil Fermentasi Air Kelapa (Cocos nucifera). Jurnal Farmasi Galenika, 4(1); 14–19 (in Indonesia)

Zofia, N.-Ł., Z. Aleksandra, B. Tomasz, Z.-D. Martyna, Z. Magdalena, H.-B. Zofia, and W. Tomasz (2020). Effect of Fermentation Time on Antioxidant and Anti-ageing Properties of Green Coffee Kombucha Ferments. Molecules, 25(22); 5394

Zulaikhah, S. T. (2019). Health Benefits of Tender Coconut Water (TCW). International Journal of Pharmaceutical Sciences and Research, 10(2); 474–80


Sofi Nabila
Arie Srihardyastutie
arie− (Primary Contact)
Sasangka Prasetyawan
Rurini Retnowati
Nabila, S., Srihardyastutie, A., Prasetyawan, S. ., Aulanni’am, & Retnowati, R. . (2023). The Addition of Red Dragon Fruit and Lemon Peels for the Improvement of Fermented Beverage Products. Science and Technology Indonesia, 8(1), 100–107.

Article Details