Coprecipitation Synthesis and Antimicrobial Effect Study of Europium Doped Spinel Manganese Ferrites Nanoparticles (MnEu0.1Fe1.9O4NPs)

Amina Chidouh, Tarek Tahraoui, Badra Barhouchi


Due to the high prevalence of micro-organisms resistant to conventional antimicrobials, the search for new antimicrobial drugs is underway, with nanoparticles being one of the options. This study reports for the first time the use of the coprecipitation method to synthesize europium (Eu) doped spinel manganese ferrites nanoparticles (MnEu0.1Fe1.9O4NPs). The purpose of this research is to determine the antimicrobial activity of MnEu0.1Fe1.9O4NPs. MnEu0.1Fe1.9O4NPs were analyzed using Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-Ray Analysis (EDX) to determine their structure, size, morphology and elemental compositions. The antimicrobial activity of synthesized nanoparticles was evaluated qualitatively using a diffusion disc on agar, followed by minimum inhibitory concentrations (MIC) determination. The findings show that all tested strains were adversely affected by the examined NPs, where E. coli exhibited the highest sensitivity to NPs, followed by S. aureus. The NPs displayed a moderate level of anti-candida action. MnEu0.1Fe1.9O4NPs could be exploited in biomedical usages.


Akhtar, S., S. Rehman, M. A. Almessiere, F. A. Khan, Y. Slimani, and A. Baykal (2019). Synthesis of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 Nanoparticles Via the Hydrothermal Approach Induced Anti-cancer and Antibacterial Activities. Nanomaterials, 9(11); 1635

Al Zahrani, S. A., A. Manikandan, K. Thanrasu, A. Dinesh, K. K. Raja, M. Almessiere, Y. Slimani, A. Baykal, S. Bhuminathan, and S. R. Jayesh (2022). Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals, 12(2); 268

Allahverdiyev, A. M., K. V. Kon, E. S. Abamor, M. Bagirova, and M. Rafailovich (2011). Coping with Antibiotic Resistance: Combining Nanoparticles with Antibiotics and Other Antimicrobial Agents. Expert Review of Anti-infective Therapy, 9(11); 1035–1052

Arulmurugan, R., B. Jeyadevan, G. Vaidyanathan, and S. Sendhilnathan (2005). Effect of Zinc Substitution on Co–Zn and Mn–Zn Ferrite Nanoparticles Prepared by Co-precipitation. Journal of Magnetism and Magnetic Materials, 288; 470–477

Ashour, A., A. I. El Batal, M. A. Maksoud, G. S. El Sayyad, S. Labib, E. Abdeltwab, and M. El Okr (2018). Antimicrobial Activity of Metal-substituted Cobalt Ferrite Nanoparticles Synthesized by sol–gel Technique. Particuology, 40; 141–151

Bandekar, A. S., P. S. Gaikar, A. P. Angre, A. M. Chaughule, and N. S. Pradhan (2019). Effect of Annealing on Microstructure and Magnetic Properties of Mn Ferrite Powder. Journal of Biological and Chemical Chronicles, 5(3); 74–78

Bouzigues, C., T. Gacoin, and A. Alexandrou (2011). Biological Applications of Rare-earth Based Nanoparticles. ACS nano, 5(11); 8488–8505

Bozon-Verduraz, F., F. Fiévet, J. Y. Piquemal, R. Brayner, K. El Kabouss, Y. Soumare, G. Viau, and G. Shafeev (2009). Nanoparticles of Metal and Metal Oxides: Some Peculiar Synthesis Methods, Size and Shape Control, Application to Catalysts Preparation. Brazilian Journal of Physics, 39; 134–140

Bueno, A. R., M. L. Gregori, and M. C. Nóbrega (2007). Effect of Mn Substitution on the Microstructure and Magnetic Properties of Ni0. 50- xZn0. 50- xMn2xFe2O4 Ferrite Prepared by the Citrate–nitrate Precursor Method. Materials Chemistry and Physics, 105(2-3); 229–233

Coker, V. S., M. Green, and S. A. Corr (2012). Nanoscience: Volume 1: Nanostructures Through Chemistry, volume 1. Royal Society of Chemistry

Costa, A., E. Tortella, M. Morelli, and R. Kiminami (2003). Synthesis, Microstructure and Magnetic Properties of Ni–Zn Ferrites. Journal of Magnetism and Magnetic Materials, 256(1-3); 174–182

Cullity, B. (1978). Element of X-ray Diffraction 2nd Edition. United States of America: Addison WesleyPublishing CompanyInc

Das, N. and D. Das (2013). Recovery of Rare Earth Metals Through Biosorption: An Overview. Journal of Rare Earths, 31(10); 933–943

Deravi, L. F., J. D. Swartz, and D. W. Wright (2007). The Biomimetic Synthesis of Metal Oxide Nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany

Devi, E. C. and I. Soibam (2018). A Facile Low-Temperature Synthesis of MnLaxFe2-xO4 Nanoferrites with Structural and Electrical Characterization. Journal of Superconductivity and Novel Magnetism, 31; 1615–1621

Djurišić, A. B., Y. H. Leung, A. M. Ng, X. Y. Xu, P. K. Lee, N. Degger, and R. Wu (2015). Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts. Small, 11(1); 26–44

Gheidari, D., M. Mehrdad, S. Maleki, and S. Hosseini (2020). Synthesis and Potent Antimicrobial Activity of CoFe2O4 Nanoparticles Under Visible Light. Heliyon, 6(10); 05058

Gnanam, S., J. Gajendiran, J. R. Ramya, K. Ramachandran, and S. G. Raj (2021). Glycine Assisted Hydrothermal Synthesis of Pure and Europium Doped CeO2 Nanoparticles and Their Structural, Optical, Photoluminescence, Photocatalytic and Antibacterial Properties. Chemical Physics Letters, 763; 138217

Hakeem, A., G. Murtaza, I. Ahmad, P. MAOc, X. Guohua, M. Farid, M. Kanwal, G. Mustafa, M. Hussain, and M. Ahmad (2016). Effect Of Multiwalled Carbon Nanotubes on Co-Mn Ferrite Prepared by Co-precipitation Technique. Digest Journal of Nanomaterials and Biostructures, 11; 149–157

Horie, M., K. Fujita, H. Kato, S. Endoh, K. Nishio, L. K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, and Y. Hagihara (2012). Association of the Physical and Chemical Properties and the Cytotoxicity of Metal Oxidenanoparticles: Metal Ion Release, Adsorption Ability and Specific Surface Area. Metallomics, 4(4); 350–360

Houshiar, M., F. Zebhi, Z. J. Razi, A. Alidoust, and Z. Askari (2014). Synthesis of Cobalt Ferrite (CoFe2O4) Nanoparticles Using Combustion, Coprecipitation, and Precipitation Methods: A Comparison Study of Size, Structural, and Magnetic Properties. Journal of Magnetism and Magnetic Materials, 371; 43–48

Jahani, S., M. Khorasani Motlagh, and M. Noroozifar (2016). DNA Interaction of Europium (III) Complex Containing 2, 2’-Bipyridine and Its Antimicrobial Activity. Journal of Biomolecular Structure and Dynamics, 34(3); 612–624

Jesudoss, S., J. J. Vijaya, L. J. Kennedy, P. I. Rajan, H. A. Al Lohedan, R. J. Ramalingam, K. Kaviyarasu, and M. Bououdina (2016). Studies on the Efficient Dual Performance of Mn1-xNixFe2O4 Spinel Nanoparticles in Photodegradation and Antibacterial Activity. Journal of Photochemistry and Photobiology B: Biology, 165; 121–132

Jiang, L., Y. Wen, Z. Zhu, C. Su, S. Ye, J. Wang, X. Liu, and W. Shao (2020). Construction of an Efficient Nonleaching Graphene Nanocomposites with Enhanced Contact Antibacterial Performance. Chemical Engineering Journal, 382; 122906

Jiang, W., H. Mashayekhi, and B. Xing (2009). Bacterial Toxicity Comparison Between Nano-and Micro-scaled Oxide Particles. Environmental pollution, 157(5); 1619–1625

Kadiyala, U., N. A. Kotov, and J. S. VanEpps (2018). Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Current Pharmaceutical Design, 24(8); 896– 903

Kalaiselvan, C. R., S. S. Laha, S. B. Somvanshi, T. A. Tabish, N. D. Thorat, and N. K. Sahu (2022). Manganese Ferrite (MnFe2O4) Nanostructures for Cancer Theranostics. Coordination Chemistry Reviews, 473; 214809

Kollu, P., P. R. Kumar, C. Santosh, D. K. Kim, and A. N. Grace (2015). A High Capacity MnFe2O4/rGO Nanocomposite for Li and Na-ion Battery Applications. RSC Advances, 5(78); 63304–63310

Li, J., S. Xie, S. Ahmed, F. Wang, Y. Gu, C. Zhang, X. Chai, Y. Wu, J. Cai, and G. Cheng (2017). Antimicrobial Activity and Resistance: Influencing Factors. Frontiers in Pharmacology, 8; 364

Liu, S., L. Wang, and K. Chou (2018). Synthesis of Metaldoped Mn-Zn Ferrite from the Leaching Solutions of Vanadium Slag Using Hydrothermal Method. Journal of Magnetism and Magnetic Materials, 449; 49–54

Mohafez, F. S., A. M. Davarpanah, A. Rahdar, H. Beyzaei, O. Zeybek, and S. Barrett (2021). Structural, Magnetic, and in Vitro Inhibitory Characteristics of Ce-substituted MnFe2O4 Nanoparticles. Applied Physics A, 127; 1–7

Park, J. C., S. Yeo, M. Kim, G. T. Lee, and J. H. Seo (2016). Synthesis and Characterization of Novel Lanthanide-doped Magnetite@ Au core@ Shell Nanoparticles. Materials Letters, 181; 272–277

Prodi, L., E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni (2015). Imaging Agents Based on Lanthanide Doped Nanoparticles. Chemical Society Reviews, 44(14); 4922–4952

Rahman, I. and T. Ahmed (2005). A Study on Cu Substituted Chemically Processed Ni–Zn–Cu Ferrites. Journal of Magnetism and Magnetic Materials, 290; 1576–1579

Reddy, L. H., J. L. Arias, J. Nicolas, and P. Couvreur (2012).Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 112(11); 5818–5878

Rehman, S., S. M. Asiri, F. A. Khan, B. R. Jermy, H. Khan, S. Akhtar, R. A. Jindan, K. M. Khan, and A. Qurashi (2019). Biocompatible Tin Oxide Nanoparticles: Synthesis, Antibacterial, Anticandidal and Cytotoxic Activities. Chemistry Select, 4(14); 4013–4017

Sagadevan, S., Z. Z. Chowdhury, and R. F. Rafique (2018). Preparation and Characterization of Nickel Ferrite Nanoparticles Via Co-precipitation Method. Materials Research, 21

Shirsath, S. E., M. L. Mane, Y. Yasukawa, X. Liu, and A. Morisako (2014). Self-ignited High Temperature Synthesis and Enhanced Super-exchange Interactions of Ho3+-Mn2+-Fe3+-O2− Ferromagnetic Nanoparticles. Physical Chemistry Chemical Physics, 16(6); 2347–2357

Slavin, Y. N., J. Asnis, U. O. Hńfeli, and H. Bach (2017). Metal Nanoparticles: Understanding the Mechanisms Behind Antibacterial Activity. Journal of Nanobiotechnology, 15; 1–20

Vanden, D. and A. Vlirtinck (1993). Screening Methods for Antibacterial Agents From Higher Plants. Methods in Plant Biochemistry. 4th ed, Elsevier Ltd, 10; 1–297

Verma, A. and R. Chatterjee (2006). Effect of Zinc Concentration on the Structural, Electrical and Magnetic Properties of Mixed Mn–Zn and Ni–Zn Ferrites Synthesized by the Citrate Precursor Technique. Journal of Magnetism and Magnetic Materials, 306(2); 313–320

Wang, W. W. (2008). Microwave Induced Polyol-process Synthesis of MIIFe2O4 (M= Mn, Co) Nanoparticles and Magnetic Property. Materials Chemistry and Physics, 108(2-3); 227–231

Xiu, Z. m., Q. b. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez (2012). Negligible Particle-specific Antibacterial Activity of Silver Nanoparticles. Nano letters, 12(8); 4271– 4275

Yu, M., F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang (2009). Laser Scanning Up-conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-earth Nanophosphors. Analytical Chemistry, 81(3); 930–935

Zahraei, M., A. Monshi, M. del Puerto Morales, D. Shahbazi Gahrouei, M. Amirnasr, and B. Behdadfar (2015). Hydrothermal Synthesis of Fine Stabilized Superparamagnetic Nanoparticles of Zn2+ Substituted Manganese Ferrite. Journal of Magnetism and Magnetic Materials, 393; 429-436

Zhuang, W. Q., J. P. Fitts, C. M. Ajo Franklin, S. Maes, L. Alvarez Cohen, and T. Hennebel (2015). Recovery of Critical Metals Using Biometallurgy. Current Opinion in Biotechnology, 33; 327–335

Zubair, A., Z. Ahmad, A. Mahmood, W. C. Cheong, I. Ali, M. A. Khan, A. H. Chughtai, and M. N. Ashiq (2017). Structural, Morphological and Magnetic Properties of Eu Doped CoFe2O4 Nano-ferrites. Results in Physics, 7; 3203–3208


Amina Chidouh (Primary Contact)
Tarek Tahraoui
Badra Barhouchi
Chidouh, A., Tahraoui, T., & Barhouchi, B. . (2023). Coprecipitation Synthesis and Antimicrobial Effect Study of Europium Doped Spinel Manganese Ferrites Nanoparticles (MnEu0.1Fe1.9O4NPs). Science and Technology Indonesia, 8(3), 494–500.

Article Details