Increasing the Solubility and Anti-Inflammatory Activity of Curcumin by Cocrystallization

Yudi Wicaksono, Kuni Zu’aimah Barikah, Amanda Della Yudatama, Havidhatul Maulia, Nuri, Dwi Setyawan


Curcumin (CUR) is a polyphenolic compound that exhibits potent anti-inflammatory activity. However, only a tiny amount of CUR is absorbed during oral administration, which is because CUR is difficult to dissolve in water. The aim of the research was to increase the solubility of CUR through the cocrystallization technique using isonicotinamide coformer (INIC) by solvent evaporation. Cocrystal characterization was carried out using a powder X-ray diffractometer (PXRD), a differential scanning calorimeter (DSC), a Fourier transform infrared spectrometer (FTIR), and a scanning electron microscope (SEM). Solubility was evaluated using the shaking method, while the anti-inflammatory activity test was carried out using the carrageenan induced mouse leg edema method. The resulting CUR-INIC (1:1) cocrystal has a diffractogram with new diffraction peaks of 2theta at 15.00, 16.22, and 22.89◦ compared to the individual diffractograms of CUR and INIC. In the cocrystal, CUR and INIC form intermolecular interactions of hydrogen bonds, resulting in a new solid phase with a melting point of 160.1◦C. The solubility of the CUR-INIC cocrystal in water was 73.1±0.23 ug/mL, which increased 14 times compared to the solubility of initial CUR, which was only 5.05±0.07 ug/mL. The CUR-INIC cocrystal showed a percentage of edema inhibition in mice (5 hours) 130% more potent than that of initial CUR. Therefore, CUR-INIC cocrystals can be used to improve CUR solubility to obtain more excellent anti-inflammatory effects.


Abdelkader, H., A. A. Fatease, Z. Fathalla, M. E. Shoman, H. A. Abou-Taleb, and M. A. Abourehab (2022). Design, Preparation and Evaluation of Supramolecular Complexes with Curcumin for Enhanced Cytotoxicity in Breast Cancer Cell Lines. Pharmaceutics, 14(11); 2283

Acebedo-Martínez, F. J., C. Alarcón-Payer, H. M. Barrales-Ruiz, J. Niclós-Gutiérrez, A. Domínguez Martín, and D. Choquesillo-Lazarte (2022). Towards the Development of Novel Diclofenac Multicomponent Pharmaceutical Solids. Crystals, 12(8); 1038

Agarwal, A., A. Mittal, S. Ikram, L. Tyagi, and C. Gupta (2020). Solubility Enhancement of Nicergoline Poorly Water Soluble Drug by Novel Melt Sonocrystallization Technique. Scholars Academic Journal of Pharmacy, 9(12); 347–365

Ahangar, N., F. Mirzaee, M. Feizbakhsh, S. Pirhayati, and S. Shahani (2019). Antinociceptive and Anti-Inflammatory Effects of Geum iranicum khatamsaz Methanol Extract in Mice. Research Journal of Pharmacognosy, 6(3); 41–9

Anggraini, D., H. Salsabila, S. Umar, Y. Aldi, and E. Zaini (2022). Preparation and Characterization of a Eutectic Mixture of Fenofibric Acid and Nicotinic Acid and Evaluatuion of In Vivo Antihyperlipidemic Activity. Science and Technology Indonesia, 7(4); 514–521

Bergström, C. A. and P. Larsson (2018). Computational Prediction of Drug Solubility in Water Based Systems: Qualitative and Quantitative Approaches used in the Current Drug Discovery and Development Setting. International Journal of Pharmaceutics, 540(1-2); 185–193

Chavan, R. B. and N. R. Shastri (2018). Overview of Multicomponent Solid Forms. Journal of Nanotoxicology and Nanomedicine, 3(1); 23–48

Chen, Y., Y. Lu, R. J. Lee, and G. Xiang (2020). Nano Encapsulated Curcumin: and its Potential for Biomedical Applications. International Journal of Nanomedicine, 15; 3099–3120

Docherty, R., K. Pencheva, and Y. A. Abramov (2015). Low Solubility in Drug Development: De Convoluting the Relative Importance of Solvation and Crystal Packing. Journal of Pharmacy and Pharmacology, 67(6); 847–856

Ejarque, D., T. Calvet, M. Font-Bardia, and J. Pons (2021). Cocrystals Based on 4, 4’-Bipyridine: Influence of Crystal Packing on Melting Point. Crystals, 11(2); 191

Fang, L., Y. Xiao, C. Zhang, Z. Gao, S. Wu, J. Gong, and S. Rohani (2021). Intermolecular Interactions and Solubility Behavior of Multicomponent Crystal Forms of 2, 4-D: Design, Structure Analysis, and Solid-State Characterization. CrystEngComm, 23(43); 7615–7627

Ferreira, P. O., F. J. Caires, F. Z. R. de Souza, R. P. Fernandes, and A. C. de Almeida (2022). Screening of Coformers for Quercetin Cocrystals Through Mechanochemical Methods. Eclética Química, 47(1); 64–75

Fischer, F., A. Heidrich, S. Greiser, S. Benemann, K. Rademann, and F. Emmerling (2016). Polymorphism of Mechanochemically Synthesized Cocrystals: A Case Study. Crystal Growth & Design, 16(3); 1701–1707

Gamidi, R. K., M. Ukrainczyk, J. Zeglinski, and Å. C. Rasmuson (2018). Prediction of Solid State Properties of Co-Crystals using Artificial Neural Network Modelling. Crystal Growth & Design, 18; 133–144

Gao, Y., G. Chen, X. Luan, M. Zou, H. Piao, and G. Cheng (2019). Improved Oral Absorption of Poorly Soluble Curcumin Via the Concomitant use of Borneol. AAPS PharmSciTech, 20; 1–10

Granata, G., I. Paterniti, C. Geraci, F. Cunsolo, E. Esposito, M. Cordaro, A. R. Blanco, S. Cuzzocrea, and G. M. Consoli (2017). Potential Eye Drop Based on a Calix [4] Arene Nanoassembly for Curcumin Delivery: Enhanced Drug Solubility, Stability, and Anti-Inflammatory Effect. Molecular Pharmaceutics, 14(5); 1610–1622

Guo, M., X. Sun, J. Chen, and T. Cai (2021). Pharmaceutical Cocrystals: A Review of Preparations, Physicochemical Properties and Applications. Acta Pharmaceutica Sinica B, 11(8); 2537–2564

Guo, W., S. Du, Y. Lin, B. Lu, C. Yang, J. Wang, and Y. Zeng (2018). Structural and Computational Insights Into the Enhanced Solubility of Dipfluzine by Complexation: Salt and Salt-Cocrystal. New Journal of Chemistry, 42(18); 15068–15078

Gupta, A. K., D. Parasar, A. Sagar, V. Choudhary, B. S. Chopra, R. Garg, Ashish, and N. Khatri (2015). Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Adema in Mice. PloS one, 10(8); e0135558

Hakim, L., D. Mardiana, U. Rokhiyah, M. L. A. D. Lestari, and Z. Ningsih (2021). Structure and Dynamics of Curcumin Encapsulated Lecithin Micelles: A Molecular Dynamics Simulation Study. Science and Technology Indonesia, 6(3); 113–120

Haneef, J., S. Ali, and R. Chadha (2021). Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech, 22; 1–17

Haneef, J. and R. Chadha (2017). Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs using Mechanochemical Approach. AAPS PharmSciTech, 18; 2279–2290

Hanif, M., N. Ameer, Q.-u.-A. Ahmad, M. Aziz, K. Mahmood, N. Ramzan, and H. M. Abdur Rahman (2022). Improved Solubility and Corneal Permeation of PEGylated Curcumin Complex used for the Treatment of Ophthalmic Bacterial Infections. Plos one, 17(4); e0258355

He, Y., H. Liu, W. Bian, Y. Liu, X. Liu, S. Ma, X. Zheng, Z. Du, K. Zhang, and D. Ouyang (2019). Molecular Interactions for the Curcumin-Polymer Complex with Enhanced Anti-Inflammatory Effects. Pharmaceutics, 11(9); 442

Karimi-Jafari, M., L. Padrela, G. M. Walker, and D. M. Croker (2018). Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Crystal Growth & Design, 18(10); 6370–6387

Kawano, Y., S. Chen, and T. Hanawa (2021). Solubility Enhancement of Ibuprofen by Adsorption onto Spherical Porous Calcium Silicate. Pharmaceutics, 13(6); 767

Kerr, H. E., L. K. Softley, K. Suresh, A. Nangia, P. Hodgkinson, and I. R. Evans (2015). A Furosemide–Isonicotinamide Cocrystal: An Investigation of Properties and Extensive Structural Disorder. CrystEngComm, 17(35); 6707–6715

Ketkar, S., S. K. Pagire, N. R. Goud, K. Mahadik, A. Nangia, and A. Paradkar (2016). Tracing the Architecture of Caffeic Acid Phenethyl Ester Cocrystals: Studies on Crystal Structure, Solubility, and Bioavailability Implications. Crystal Growth & Design, 16(10); 5710–5716

Khames, A. (2017). Investigation of the Effect of Solubility Increase at the Main Absorption Site on Bioavailability of BCS Class II Drug (Risperidone) using Liquisolid Technique. Drug Delivery, 24(1); 328–338

Kilinkissa, O. E., K. K. Govender, and N. B. Báthori (2020). Melting Point–Solubility–Structure Correlations in Chiral and Racemic Model Cocrystals. CrystEngComm, 22(16); 2766–2771

Kuleshova, L., D. Hofmann, and R. Boese (2013). Lattice Energy Calculation–a Quick Tool for Screening of Cocrystals and Estimation of Relative Solubility. Case of Flavonoids. Chemical Physics Letters, 564; 26–32

Liu, H., H. Lin, Z. Zhou, and L. Li (2021). Bergenin-Isonicotinamide (1:1) Cocrystal with Enhanced Solubility and Investigation of its Solubility Behavior. Journal of Drug Delivery Science and Technology, 64; 102556

Ma, X. Q., C. Zhuang, B. C. Wang, Y. F. Huang, Q. Chen, and N. Lin (2019). Cocrystal of Apigenin with Higher Solubility, Enhanced Oral Bioavailability, and Anti-Inflammatory Effect. Crystal Growth & Design, 19(10); 5531–5537

Maheshwari, C., A. Jayasankar, N. A. Khan, G. E. Amidon, and N. Rodríguez-Hornedo (2009). Factors that Influence the Spontaneous Formation of Pharmaceutical Cocrystals by Simply Mixing Solid Reactants. CrystEngComm, 11(3); 493–500

Ozaki, S., Y. Nakagawa, O. Shirai, and K. Kano (2014). Substituent Effect on the Thermodynamic Solubility of Structural Analogs: Relative Contribution of Crystal Packing and Hydration. Journal of Pharmaceutical Sciences, 103(11); 3524–3531

Palanisamy, V., P. Sanphui, M. Prakash, and V. Chernyshev (2019). Multicomponent Solid Forms of the Uric Acid Reabsorption Inhibitor Lesinurad and Cocrystal Polymorphs with Urea: DFT Simulation and Solubility Study. Acta Crystallographica Section C: Structural Chemistry, 75(8); 1102–1117

Pantwalawalkar, J., H. More, D. Bhange, U. Patil, and N. Jadhav (2021). Novel Curcumin Ascorbic Acid Cocrystal for Improved Solubility. Journal of Drug Delivery Science and Technology, 61; 102233

Paulazzi, A. R., B. O. Alves, G. A. Zilli, A. E. Dos Santos, F. Petry, K. D. Soares, L. J. Danielli, J. Pedroso, M. A. Apel, and G. P. S. Aguiar (2022). Curcumin and n-Acetylcysteine Cocrystal Produced with Supercritical Solvent: Characterization, Solubility, and Preclinical Evaluation of Antinociceptive and Anti-Inflammatory Activities. Inflammopharmacology, 30(1); 327–341

Peng, Y., M. Ao, B. Dong, Y. Jiang, L. Yu, Z. Chen, C. Hu, and R. Xu (2021). Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Counter-measures. Drug Design, Development and Therapy; 4503–4525

Priyadarsini, K. I. (2014). The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 19(12); 20091–20112

Qiao, N., M. Li, W. Schlindwein, N. Malek, A. Davies, and G. Trappitt (2011). Pharmaceutical Cocrystals: An Overview. International Journal of Pharmaceutics, 419(1-2); 1–11

Salahinejad, M., T. C. Le, and D. A. Winkler (2013). Capturing the Crystal: Prediction of Enthalpy of Sublimation, Crystal Lattice Energy, and Melting Points of Organic Compounds. Journal of Chemical Information and Modeling, 53(1); 223–229

Sanphui, P. and G. Bolla (2018). Curcumin, a Biological Wonder Molecule: A Crystal Engineering Point of View. Crystal Growth & Design, 18(9); 5690–5711

Sanphui, P., N. R. Goud, U. R. Khandavilli, S. Bhanoth, and A. Nangia (2011). New Polymorphs of Curcumin. Chemical Communications, 47(17); 5013–5015

Satapathy, B. S., A. Patel, R. N. Sahoo, and S. Mallick (2021). Crystal Products of Lamotrigine Citric Acid for Improvement of in Vitro Drug Release in Simulated Gastric Fluid. Journal of the Serbian Chemical Society, 86(1); 51–61

Sharma, M., B. S. Inbaraj, P. K. Dikkala, K. Sridhar, A. N. Mude, and K. Narsaiah (2022). Preparation of Curcumin Hydrogel Beads for the Development of Functional Kulfi: A Tailoring Delivery System. Foods, 11(2); 182

Sohn, S.-I., A. Priya, B. Balasubramaniam, P. Muthuramalingam, C. Sivasankar, A. Selvaraj, A. Valliammai, R. Jothi, and S. Pandian (2021). Biomedical Applications and Bioavailability of Curcumin—An Updated Overview. Pharmaceutics, 13(12); 2102

Suresh, K. and A. Nangia (2018). Curcumin: Pharmaceutical Solids as a Platform to Improve Solubility and Bioavailability. CrystEngComm, 20(24); 3277–3296

Tabanelli, R., S. Brogi, and V. Calderone (2021). Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics, 13(10); 1715

Taylor, C. R. and G. M. Day (2018). Evaluating the Energetic Driving Force for Cocrystal Formation. Crystal Growth & Design, 18(2); 892–904

Thakuria, R., A. Delori, W. Jones, M. P. Lipert, L. Roy, and N. Rodríguez-Hornedo (2013). Pharmaceutical Cocrystals and Poorly Soluble Drugs. International Journal of Pharmaceutics, 453(1); 101–125

Volodin, A. D., A. A. Korlyukov, and A. F. Smol’yakov (2019). Organoelement Compounds Crystallized In Situ: Weak Intermolecular Interactions and Lattice Energies. Crystals, 10(1); 15

Wicaksono, Y., V. A. Rosidi, S. Y. Saragih, L. S. Fauziah, and D. Setyawan (2021). Preparation of Spray Dried Coamorphous Solids to Improve the Solubility and Dissolution Rate of Atorvastatin Calcium. Jurnal Teknologi, 83(2); 77–83

Wicaksono, Y., D. Setyawan, and A. S. Nugraha (2020). Kelakuan Termal Kokristal: Kajian Kes Kokristal Ketoprofen-Asid Malonik dan Ketoprofen-Nikotinamida. Sains Malaysiana, 49(11); 2679–2687 (in Malaysia)

Yimer, T., E. M. Birru, M. Adugna, M. Geta, and Y. K. Emiru (2020). Evaluation of Analgesic and Anti-Inflammatory Activities of 80% Methanol Root Extract of Echinops kebericho M. (Asteraceae). Journal of Inflammation Research, 13; 647–658

Zhang, J., Y. Zhang, H. Wang, W. Chen, A. Lu, H. Li, L. Kang, and C. Wu (2023). Solubilisation and Enhanced Oral Absorption of Curcumin using a Natural Non-Nutritive Sweetener Mogroside V. International Journal of Nanomedicine, 18; 1031–1045

Zhnyakina, L., M. Tkachenko, Y. V. Moshchenskii, and I. Munina (2020). Differential Scanning Calorimetry Study of the Ibuprofen–Nicotinamide Binary Disperse System and the Anti Inflammatory Activity of One of Its Secondary Eutectics. Pharmaceutical Chemistry Journal, 54; 954–958


Yudi Wicaksono (Primary Contact)
Kuni Zu’aimah Barikah
Amanda Della Yudatama
Havidhatul Maulia
Dwi Setyawan
Wicaksono, Y., Barikah, . K. Z. ., Yudatama, A. D. ., Maulia, H. ., Nuri, & Setyawan, D. . (2023). Increasing the Solubility and Anti-Inflammatory Activity of Curcumin by Cocrystallization. Science and Technology Indonesia, 8(3), 501–508.

Article Details