Okra Mucilage Extract as A Co-Surfactant Increased the Curcumin Nanoemulsion Stability and Encapsulation Efficiency

El Fajriyah Aulia Putri, Ellya Indahyanti, Diah Mardiana, Maria Lucia A.D Lestari, Zubaidah Ningsih


Curcumin has various bio-functional properties; however, curcumin poor bioavailability reduces its efficacy. Nanoemulsion delivery system is an alternative method improving curcumin bioavailability in which surfactant and oil used, play an important role in determining nanoemulsion properties. Several studies on curcumin nanoemulsions apply synthetic surfactants which can be harmful if they are added excessively. This study aims to use a natural emulsifying agent, namely okra mucilage extract (OME), and determine its effectiveness as co surfactant. OME is safe to use as an emulsifying agent because it is natural, harmless, safe, biodegradable and eco-friendly. Liquid-liquid and microwave extraction methods were used to obtain OME which was further identified using Fourier Transfer Infrared Spectroscopy (FTIR). Meanwhile, sonication method was used to produce curcumin nano-emulsion (CurN). The particle size and polydispersity index of curcumin nano-emulsion were measured using Particle Size Analyzer (PSA) with Dynamic Light Scattering (DLS) technique, while the morphology of the nanoemulsion was observed using a Digital Imaging Microscope and Confocal Laser Scanning Microscope (CLSM). The results showed that the addition of 0.0160 g OME at a ratio of 1:5 (OME: Tween 80) in the preparation of 5 mL of CurN was able to reduce the particle size and polydispersity index from 740.80 ± 9.70 nm to 289.20 ± 2.23 and 0.340 ± 0.005 to 0.165 ± 0.008 respectively. OME increased the encapsulation efficiency from 77.93 ± 6.59% to 87.17 ± 1.12% which was confirmed by the augmentation of the fluorescence intensity of curcumin from 192.82 to 388.55. The addition of OME also maintained the stability of the CurN up to 14 days of storage at 4°C.


Alba, K., C. Ritzoulis, N. Georgiadis, and V. Kontogiorgos (2013). Okra Extracts as Emulsifiers for Acidic Emulsions. Food Research International, 54(2); 1730–1737

Arjunan, K. M. R. A. M. S. M. K., A. (2021). Okra Gum from Abelmoshus esculentus fruit pods: Isolation, Characterisation and Utilisation for the Formulation of Seaweed alginate based Antidiabetic Drug Loaded Gelibeads. International Journal of Botany Studies

Artiga-Artigas, M., Y. Lanjari-Pérez, and O. Martín-Belloso (2018). Curcumin-loaded Nanoemulsions Stability as Affected by the Nature and Concentration of Surfactant. Food Chemistry, 266; 466–474

Aswathanarayan, J. B. and R. R. Vittal (2019). Nanoemulsions and Their Potential Applications in Food Industry. Frontiers in Sustainable Food Systems, 3; 95

Chuacharoen, T., S. Prasongsuk, and C. M. Sabliov (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15); 2744

Dantas, T. L., F. C. Alonso Buriti, and E. R. Florentino (2021). Okra (abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. Plants, 10(8); 1683

Dei Cas, M. and R. Ghidoni (2019). Dietary Curcumin: Correlation Between Bioavailability and Health Potential. Nutrients, 11(9); 2147

Den Hartogh, D. J., A. Gabriel, and E. Tsiani (2019). Antidiabetic Properties of Curcumin Ii: Evidence From in Vivo Studies. Nutrients, 12(1); 58

Evan, S., Rao, Y. Song, F. Peddie, and A. M. Evans (2011). Particle Size Reduction to the Nanometer Range: A Promising Approach to Improve Buccal Absorption of Poorly Water-soluble Drugs. International Journal of Nanomedicine; 1245–1251

Gabr, S. A., W. M. Elsaed, M. A. Eladl, M. El Sherbiny, H. A. Ebrahim, S. M. Asseri, Y. A. Eltahir, N. Elsherbiny, and M. Eldesoqui (2022). Curcumin Modulates Oxidative Stress, Fibrosis, and Apoptosis in Drug-resistant Cancer Cell Lines. Life, 12(9); 1427

Harun, S. N., S. A. Nordin, S. S. A. Gani, A. F. Shamsuddin, M. Basri, and H. B. Basri (2018). Development of Nanoemulsion for Efficient Brain Parenteral Delivery of Cefuroxime: Designs, Characterizations, and Pharmacokinetics. International Journal of Nanomedicine; 2571–2584

Herawati, H. (2018). Potensi Hidrokoloid Sebagai Bahan Tambahan pada Produk Pangan dan Nonpangan Bermutu. Jurnal Litbang Pertanian, 37(1); 17–25 (In Indonesia)

Hudiyanti, D., M. F. Al Khafiz, K. Anam, P. Siahaan, and S. M. Christa (2022). In Vitro Evaluation of Curcumin Encapsulation in Gum Arabic Dispersions Under Different Environments. Molecules, 27(12); 3855

Jaiswal, M., R. Dudhe, and P. Sharma (2015). Nanoemulsion: an Advanced Mode of Drug Delivery System. 3 Biotech, 5; 123–127

Jakubczyk, K., A. Drużga, J. Katarzyna, and K. Skonieczna Żydecka (2020). Antioxidant Potential of Curcumin a Meta-analysis of Randomized Clinical Trials. Antioxidants, 9(11); 1092

Jannah, M., M. L. A. D. Lestari, E. I. Yanti, and Z. Ningsih (2021). Emulsion Formulation of Curcumin in Soybean Oil with a Combination Surfactant of Tween-80 and Lecithin using Wet Ball Milling Method. AIP Conference Proceedings, 2360(1)

Karimi, M., M. Mashreghi, S. Shokooh Saremi, and M. R. Jaafari (2020). Spectrofluorometric Method Development and Validation for the Determination of Curcumin in Nanoliposomes and Plasma. Journal of Fluorescence, 30; 1113–1119

Kumar, A., A. Ahuja, J. Ali, and S. Baboota (2016). Curcumin-loaded Lipid Nanocarrier for Improving Bioavailability, Stability and Cytotoxicity Against Malignant Glioma Cells. Drug Delivery, 23(1); 214–229

Kunnumakkara, A. B., D. Bordoloi, G. Padmavathi, J. Monisha, N. K. Roy, S. Prasad, and B. B. Aggarwal (2017). Curcumin, the Golden Nutraceutical: Multitargeting for Multiple Chronic Diseases. British Journal of Pharmacology, 174(11); 1325–1348

Lim, V., L. B. S. Kardono, and N. Kam (2015). Studi Karakteristik dan Stabilitas Pengemulsi dari Bubuk Lendir Okra (Abelmoshus esculentus). Jurnal Aplikasi Teknologi Pangan, 4(3)

Liu, Q., H. Huang, H. Chen, J. Lin, and Q. Wang (2019). Food-grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules, 24(23); 4242

Lousinian, S., M. Dimopoulou, C. Panayiotou, and C. Ritzoulis (2017). Self-assembly of a Food Hydrocolloid: the Case of Okra Mucilage. Food Hydrocolloids, 66; 190–198

Marin, E., M. Briceno, and C. George (2016). Method to Produce Curcumin Oil-in-water Nanoemulsions as Templates for Drug Carriers. Journal of Biotechnology & Biomaterials, 6; 1–8

Md Saari, N. H., L. S. Chua, R. Hasham, and L. Yuliati (2020). Curcumin-loaded Nanoemulsion for Better Cellular Permeation. Scientia Pharmaceutica, 88(4); 44

Noorlaila, A., A. Siti Aziah, R. Asmeda, and A. Norizzah (2015). Emulsifying Properties of Extracted Okra (Abelmoschus esculentus L.) Mucilage of Different Maturity Index and its Application in Coconut Milk Emulsion. International Food Research Journal, 22(2)

Pal, K. (2020). Facile Synthesis of Natural Therapeutics Encapsulated Biopolymeric Okra Mucilage Nanoparticles as Dual ameliorative agent. International Conference on Multidisciplinary Sciences, 6; 6798

Pinheiro, A. C., M. Lad, H. D. Silva, M. A. Coimbra, M. Boland, and A. A. Vicente (2013). Unravelling the Behaviour of Curcumin Nanoemulsions During in Vitro Digestion: Effect of the Surface Charge. Soft Matter, 9(11); 3147–3154

Ritzoulis, C. (2017). Mucilage Formation in Food: A Review on the Example of Okra. International Journal of Food Science & Technology, 52(1); 59–67

Saha, D. and S. Bhattacharya (2010). Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. Journal of Food Science and Technology, 47; 587–597

Sandri, G., M. C. Bonferoni, F. Ferrari, S. Rossi, and C. M. Caramella (2014). The Role of Particle Size in Drug Release and Absorption. Particulate Products: Tailoring Properties for Optimal Performance; 323–341

Sari, T., B. Mann, R. Kumar, R. Singh, R. Sharma, M. Bhardwaj, and S. Athira (2015). Preparation and Characterization of Nanoemulsion Encapsulating Curcumin. Food Hydrocolloids, 43; 540-546

Shao, P., J. Feng, P. Sun, N. Xiang, B. Lu, and D. Qiu (2020). Recent Advances in Improving Stability of Food Emulsion by Plant Polysaccharides. Food Research International, 137; 109376

Subositi, D. and S. Wahyono (2019). Study of the Genus Curcuma in Indonesia Used as Traditional Herbal Medicines. Biodiversitas Journal of Biological Diversity, 20(5)

Toden, S. and A. Goel (2017). The Holy Grail of Curcumin and its Efficacy In Various Diseases: Is Bioavailability Truly a Big Concern? Journal of Restorative Medicine, 6(1); 27

Uddin Zim, A. I., J. Khatun, M. F. Khan, M. A. Hossain, and M. M. Haque (2021). Evaluation of in Vitro Antioxidant Activity of Okra Mucilage and its Antidiabetic and Antihy-perlipidemic Effect in Alloxan-induced Diabetic Mice. Food Science & Nutrition, 9(12); 6854–6865

Zaharuddin, N. D., M. I. Noordin, A. Kadivar, et al. (2014). The use of Hibiscus esculentus (okra) Gum in Sustaining the Release of Propranolol Hydrochloride in a Solid Oral Dosage Form. BioMed Research International, 2014

Zhang, Z. and D. J. McClements (2018). Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. Nanoemulsions; 21–49


El Fajriyah Aulia Putri
Ellya Indahyanti
Diah Mardiana
Maria Lucia A.D Lestari
Zubaidah Ningsih
zubaidah@ub.ac.id (Primary Contact)
Putri, E. F. A., Indahyanti, E. ., Mardiana, D., Lestari, M. L. A., & Ningsih, Z. (2023). Okra Mucilage Extract as A Co-Surfactant Increased the Curcumin Nanoemulsion Stability and Encapsulation Efficiency. Science and Technology Indonesia, 8(3), 509–515. https://doi.org/10.26554/sti.2023.8.3.509-515

Article Details

Most read articles by the same author(s)