Spectroscopic Diagnostics of Spectral Lines Emission from Cu Plasma within the Visible Spectrum Range
Abstract
The creation and characterization of laser-induced plasma (LIP), a significant phenomenon in several applications, are influenced by the sample’s physical qualities as well as the laser’s parameters. In this research, we created Cu plasma in the atmosphere using an Nd: YAG laser operating at a wavelength of 532 nm with a laser irradiance energy range (400-800) mJ. The effect of the laser’s irradiance energy on the plasma characteristics was investigated using optical emission spectroscopy (OES). Using the two ratio and Stark broadening methods, we successfully measured the two most important plasma properties (electron temperature and electron density). The electron’s plasma temperature value ranged from 2.3 to 3 eV. The value of electron plasma density is in the range from 6.75×1017 to 15×1017 cm−3. Also, we found that other plasma parameters like plasma frequency (fp), particles in the Debye sphere (ND), and Debye length (?D) are affected by laser energy. Where plasma frequency ranged from 7.378 to 10.998×1012 Hz, the Debye sphere ranged from 7.294 to 7.022×103, and the range of Debye length from 1.372 to 1.038×10−5 cm.
References
Afgan, M. S., M. Anwar-ul Haq, S. Haq, M. Kalyar, and M. Baig (2018). Spectroscopic Investigations of the Laser Induced Thallium Plasma. Laser Physics, 29(1); 016004
Ahmed, K. A., K. A. Aadim, and R. S. Mohammed (2021). Investigation the Energy Influence and Excitation Wavelength on Spectral Characteristics of Laser Induced MgZn Plasma. In AIP Conference Proceedings, volume 2372. AIP Publishing
Botto, A., B. Campanella, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, F. Poggialini, and V. Palleschi (2019). Applications of Laser-Induced Breakdown Spectroscopy in Cultural Heritage and Archaeology: A Critical Review. Journal of Analytical Atomic Spectrometry, 34(1); 81–103
Bulajic, D., G. Cristoforetti, M. Corsi, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, S. Green, and D. Bates (2002). Diagnostics of High-Temperature Steel Pipes in Industrial Environment by Laser-Induced Breakdown Spectroscopy Technique: The LIBSGRAIN Project. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(7); 1181–1192
Corsi, M., G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona (2003). Application of Laser-Induced Breakdown Spectroscopy Technique to Hair Tissue Mineral Analysis. Applied Optics, 42(30); 6133–6137
Fikry, M., W. Tawfik, and M. M. Omar (2020). Investigation on the Effects of Laser Parameters on the Plasma Profile of Copper using Picosecond Laser Induced Plasma Spectroscopy. Optical and Quantum Electronics, 52; 1–16
Gupta, A., J. M. Curran, S. Coulson, and C. M. Triggs (2017). Comparison of Intra-Day and Inter Day Variation in Libs Spectra. Forensic Chemistry, 3; 36–40
Kasem, M. A., R. E. Russo, and M. A. Harith (2011). Influence of Biological Degradation and Environmental Effects on The Interpretation of Archeological Bone Samples with Laser-Induced Breakdown Spectroscopy. Journal of Analytical Atomic Spectrometry, 26(9); 1733–1739
Keerthi, K., S. D. George, S. D. Kulkarni, S. Chidangil, and V. Unnikrishnan (2022). Elemental Analysis of Liquid Samples by Laser Induced Breakdown Spectroscopy (LIBS): Challenges and Potential Experimental Strategies. Optics & Laser Technology, 147; 107622
Li, T., Z. Hou, Y. Fu, J. Yu, W. Gu, and Z. Wang (2019). Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy (CF-LIBS) with Blackbody Radiation Reference. Analytica Chimica Acta, 1058(13); 39–47
Lorenzetti, G., S. Legnaioli, E. Grifoni, S. Pagnotta, and V. Palleschi (2015). Laser-Based Continuous Monitoring and Resolution of Steel Grades in Sequence Casting Machines. Spectrochimica Acta Part B: Atomic Spectroscopy, 112; 1–5
Mohammed, R. S., K. A. Aadim, and K. A. Ahmed (2022a). Spectroscopy Diagnostic of Laser Intensity Effect on Zn Plasma Parameters Generated by Nd: YAG Laser. Iraq Journal of Science, 63(9); 3711–3718
Mohammed, R. S., K. A. Aadim, and K. A. Ahmed (2022b). Study the Effect of Fundamental and Second Harmonic Wavelength on Plasma Parameters of Emission Magnesium Lines in Nd: YAG Laser. In AIP Conference Proceedings, volume 2386. AIP Publishing
Piel, A. (2010). An Introduction to Laboratory, Space, and Fusion Plasmas. Plasma Physics; 35–40
Pyun, S. H., W. Min, B. Goo, S. Seit, A. Azzi, D. Y.-S. Wong, G. S. Munavalli, C.-H. Huh, C.-H. Won, and M. Ko (2023). Real-Time, in Vivo Skin Cancer Triage by Laser-Induced Plasma Spectroscopy Combined with a Deep Learning–Based Diagnostic Algorithm. Journal of the American Academy of Dermatology, 89(1); 99–105
Radziemski, L. J. (2002). From LASER to LIBS, the Path of Technology Development. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(7); 1109–1113
Sancey, L., V. Motto-Ros, B. Busser, S. Kotb, J.-M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu (2014). Laser Spectrometry for Multi-Elemental Imaging of Biological Tissues. Scientific Reports, 4(1); 6065
Shaikh, N. M., S. Hafeez, M. Kalyar, R. Ali, and M. Baig (2008). Spectroscopic Characterization of Laser Ablation Brass Plasma. Journal of Applied Physics, 104(10)
Suchoňová, M., P. Veis, J. Karhunen, P. Paris, M. Pribula, K. Piip, M. Laan, C. Porosnicu, C. Lungu, and A. Hakola (2017). Determination of Deuterium Depth Profiles in Fusion-Relevant Wall Materials by Nanosecond LIBS. Nuclear Materials and Energy, 12; 611–616
Tavares, T. R., A. M. Mouazen, L. C. Nunes, F. R. dos Santos, F. L. Melquiades, T. R. da Silva, F. J. Krug, and J. P. Molin (2022). Laser-Induced Breakdown Spectroscopy (LIBS) for Tropical Soil Fertility Analysis. Soil and Tillage Research, 216; 105250
Wainwright, E. R., S. W. Dean, F. C. De Lucia, T. P. Weihs, and J. L. Gottfried (2020). Effect of Sample Morphology on the Spectral and Spatiotemporal Characteristics of Laser-Induced Plasmas from Aluminum. Applied Physics A, 126(2); 1–18
Wang, J., X. Li, C. Wang, L. Zhang, and X. Li (2018). Effect of Laser Wavelength and Energy on the Detecting of Trace Elements in Steel Alloy. Optik, 166; 199–206
Yamamoto, K. Y., D. A. Cremers, M. J. Ferris, and L. E. Foster (1996). Detection of Metals in the Environment using a Portable Laser-Induced Breakdown Spectroscopy Instrument. Applied Spectroscopy, 50(2); 222–233
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.