Optimization Thickness of Photoanode Layer and Membrane as Electrolyte Trapping Medium for Improvement Dye-Sensitized Solar Cell Performance

Nita Kusumawati, Pirim Setiarso, Supari Muslim, Qonita Arky Hafidha, Sinta Anjas Cahyani, Fadlurachman Faizal Fachrirakarsie


Dye-Sensitized Solar Cells (DSSC) are photovoltaic devices that contain a dye that acts as a solar light acceptor. The use of dyesensitized solar cells to solve increasing energy demand and environmental problems still results in low efficiency values. In this study, optimization of DSSC components was carried out to increase DSSC efficiency by varying the thickness of the titanium dioxide (TiO2) semiconductor photoanode layer, polyvinylidene fluoride (PVDF) trap electrolyte membrane, and polyvinylidene fluoride nanofiber (PVDF NF) to obtain the optimum thickness. Scanning Electron Microscope (SEM) results of membrane thickness variation and titanium dioxide (TiO2) semiconductor photoanode coating showed the formation of nanofiber fibers composed of three-dimensional, porous, and diameter networks connected to the PVDF NF membrane. The increase in density and decrease in pore size, along with an increase in thickness and cracking as the TiO2 photoanode semiconductor layer increases, affect the electron transport rate of the DSSC. The higher particle density level will inhibit the electron transport rate, so it can reduce the efficiency of DSSC. The optimum thickness of the TiO2 semiconductor layer and PVDF NF electrolyte membrane of 0.20 mm and 0.35 mm can produce values, voltage, fill factor current density, and electrical efficiency of 500 mV, 2.7 x 10−3 mA.cm−2, 1.80%, and 2.40%, respectively.


Abdel-Galeil, M. M., R. Kumar, A. Matsuda, and R. E. El-Shater (2021). Investigation on Influence of Thickness Variation Effect of TiO2 Film, Spacer and Counter Electrode for Improved Dye-Sensitized Solar Cells Performance. Optik, 227(166108); 166108

Ammar, A. M., H. S. Mohamed, M. M. Yousef, G. M. Abdel-Hafez, A. S. Hassanien, and A. S. Khalil (2019). Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials, 2019; 1–10

Benhabiles, O., F. Galiano, T. Marino, H. Mahmoudi, H. Lounici, and A. Figoli (2019). Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules, 24(4); 724

Boytsova, O., I. Zhukova, A. Tatarenko, T. Shatalova, A. Beiltiukov, A. Eliseev, and A. Sadovnikov (2022). The Anatase-to-Rutile Phase Transition in Highly Oriented Nanoparticles Array of Titania with Photocatalytic Response Changes. Nanomaterials, 12(24); 4418

Dambhare, M. V., B. Butey, and S. Moharil (2021). Solar Photovoltaic Technology: A Review of Different Types of Solar Cells and Its Future Trends. In Journal of Physics: Conference Series, volume 1913. IOP Publishing, page 012053

Diantoro, M., M. B. Zaini, T. Suprayogi, N. Mufti, S. Zulaikah, and A. Hidayat (2020). Effect of (SnO2: TiO2) Nanoparticles on Charging Performance of Integrated Dye-Sensitized Solar Cell-Supercapacitor. In AIP Conference Proceedings, volume 2231. AIP Publishing

Dissanayake, M., T. Jaseetharan, G. Senadeera, B. Mellander, I. Albinsson, M. Furlani, and J. Kumari (2021). Solid-State Solar Cells Co-Sensitized with PbS/CdS Quantum Dots and N719 Dye and Based on Solid Polymer Electrolyte with Binary Cations and Nanofillers. Journal of Photochemistry and Photobiology A: Chemistry, 405(112915); 112915

Drygała, A. (2021). Influence of TiO2 Film Thickness on Photovoltaic Properties of Dye-Sensitized Solar Cells. In IOP Conference Series: Earth and Environmental Science, volume 642. IOP Publishing, page 012001

Esgin, H., Y. Caglar, and M. Caglar (2022). Photovoltaic Performance and Physical Characterization of Cu Doped ZnO Nanopowders as Photoanode for DSSC. Journal of Alloys and Compounds, 890(161848); 161848

He, Z., F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaün (2021). Electrospun PVDF Nanofibers for Piezo-electric Applications: A Review of the Influence of Electrospinning Parameters on the Phase and Crystallinity Enhancement. Polymers, 13(2); 174

Hossain, M. K., M. Rahman, M. Basher, M. Manir, and M. Bashar (2019). Influence of Thickness Variation of Gamma-Irradiated DSSC Photoanodic TiO2 Film on Structural, Morphological and Optical Properties. Optik, 178; 449–460

Karim, N. A., U. Mehmood, H. F. Zahid, and T. Asif (2019). Nanostructured Photoanode and Counter Electrode Materials for Efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 185; 165–188

Khan, I., D. Tan, W. Azam, and S. T. Hassan (2022). Alternate Energy Sources and Environmental Quality: The Impact of Inflation Dynamics. Gondwana Research, 106; 51–63

Kusumawati, N., P. Setiarso, A. B. Santoso, S. Muslim, Q. A’yun, and M. M. Putri (2023). Characterization of Poly (vinylidene Fluoride) Nanofiber-Based Electrolyte and Its Application to Dye-Sensitized Solar Cell with Natural Dyes. Indonesian Journal of Chemistry, 23(1); 113

Kusumawati, N., P. Setiarso, M. M. Sianita, and S. Muslim (2018). Transport Properties, Mechanical Behavior, Thermal and Chemical Resistance of Asymmetric Flat Sheet Membrane Prepared from PSf/PVDF Blended Membrane on Gauze Supporting Layer. Indonesian Journal of Chemistry, 18(2); 257–264

Lal, M., P. Sharma, and C. Ram (2021). Calcination Temperature Effect on Titanium Oxide (TiO2) Nanoparticles Synthesis. Optik, 241; 166934

Liu, F., F. Bin, J. Xue, L. Wang, Y. Yang, H. Huo, J. Zhou, and L. Li (2020). Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Interfaces, 12(20); 22710–22720

Liu, R., B. Yuan, S. Zhong, J. Liu, L. Dong, Y. Ji, Y. Dong, C. Yang, and W. He (2021). Poly (vinylidene Fluoride) Separators for Next-Generation Lithium Based Batteries. Nano Select, 2(12); 2308–2345

Lobregas, M. O. S. and D. H. Camacho (2019). Gel Polymer Electrolyte System Based on Starch Grafted with Ionic Liquid: Synthesis, Characterization and Its Application in Dye-Sensitized Solar Cell. Electrochimica Acta, 298; 219–228

Medvids, A., P. Onufrijevs, J. Kaupužs, R. Eglitis, J. Padgurskas, A. Zunda, H. Mimura, I. Skadins, and S. Varnagiris (2021). Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical, Photocatalytic and Antibacterial Properties. Optics & Laser Technology, 138(106898); 106898

Padmini, M., T. Balaganapathi, and P. Thilakan (2021). Mesoporous Rutile TiO2: Synthesis, Characterization and Photocatalytic Performance Studies. Materials Research Bulletin, 144(111480); 111480

Richhariya, G., B. C. Meikap, and A. Kumar (2022). Review on Fabrication Methodologies and Its Impacts on Performance of Dye-Sensitized Solar Cells. Environmental Science and Pollution Research, 29(11); 15233–15251

Sabzi, M. and S. M. Anijdan (2019). Microstructural Analysis and Optical Properties Evaluation of Sol-Gel Heterostructured NiO-TiO2 Film Used for Solar Panels. Ceramics International, 45(3); 3250–3255

Saxena, P. and P. Shukla (2021). A Comprehensive Review on Fundamental Properties and Applications of Poly (vinylidene Fluoride)(PVDF). Advanced Composites and Hybrid Materials, 4(1); 8–26

Semalti, P. and S. N. Sharma (2020). Dye Sensitized Solar Cells (DSSCs) Electrolytes and Natural Photo-Sensitizers: A Review. Journal of nanoscience and nanotechnology, 20(6); 3647–3658

Setiarso, P., R. V. Harsono, and N. Kusumawati (2023). Fabrication of Dye Sensitized Solar Cell (DSSC) Using Combination of Dyes Extracted from Curcuma (Curcuma xanthorrhiza) Rhizome and Binahong (Anredera cordifolia) Leaf with Treatment in pH of the Extraction. Indonesian Journal of Chemistry, 23(4); 924

Shirkavand, M., M. Bavir, A. Fattah, H. R. Alaei, and M. H. Tayarani Najaran (2019). Influence of TiO2 Layer Thickness as Photoanode in Dye Sensitized Solar Cells. AUT Journal of Electrical Engineering, 51(1); 101–110

Tontapha, S., P. Uppachai, and V. Amornkitbamrung (2021). Fabrication of Functional Materials for Dye-Sensitized Solar Cells. Frontiers in Energy Research, 9; 641983

Venkatesan, S., Y. Chen, H. Teng, and Y. Lee (2022). Enhanced Adsorption on TiO2 Photoelectrodes of Dye-Sensitized Solar Cells by Electrochemical Methods Dye. Journal of Alloys and Compounds, 903(163959); 163959

Vural, G. (2020). Renewable and Non-Renewable Energy-Growth Nexus: A Panel Data Application for the Selected Sub-Saharan African Countries. Resources Policy, 65(101568); 101568

Xie, Y., J. Wang, F. Ren, H. Shuai, and G. Du (2022). Nonmetallic Mineral as the Carrier of TiO2 Photocatalyst: A Review. Frontiers in Catalysis, 2; 806316

Yang, J., J. Liu, Y. Li, X. Yu, Z. Yi, Z. Zhang, F. Chi, and L. Liu (2022). A DSSC Electrolyte Preparation Method Considering Light Path and Light Absorption. Micromachines, 13(11); 1930

Zhang, K., W. Zhao, Q. Liu, and M. Yu (2021). A New Magnetic Melt Spinning Device for Patterned Nanofiber. Scientific Reports, 11(1); 8895

Zhou, R., S. Yang, E. Tao, L. Liu, and J. Qian (2022). The Defect is Perfect: MoS2/TiO2 Modified with Unsaturated Mo Vacancies to Construct Z-Scheme Heterojunction & Improve Mobility of e−. Journal of Cleaner Production,


Nita Kusumawati
nitakusumawati@unesa.ac.id (Primary Contact)
Pirim Setiarso
Supari Muslim
Qonita Arky Hafidha
Sinta Anjas Cahyani
Fadlurachman Faizal Fachrirakarsie
Kusumawati, N., Setiarso, P. ., Muslim, S. ., Hafidha, Q. A. ., Cahyani, S. A. ., & Fachrirakarsie, . F. F. . (2024). Optimization Thickness of Photoanode Layer and Membrane as Electrolyte Trapping Medium for Improvement Dye-Sensitized Solar Cell Performance. Science and Technology Indonesia, 9(1), 7–16. https://doi.org/10.26554/sti.2024.9.1.7-16

Article Details