Colorimetric Sensing of Ascorbic Acid Using Cu-Phen MOFs and Subsequent Digital Image Analysis with Smartphone
Abstract
Vitamin C, also known as ascorbic acid, is a crucial nutrient involved in a number of enzymatic processes for tissue healing. Additionally serving as an antioxidant, ascorbic acid is crucial for keeping the immune system strong. It is essential to create a quantitative analytical approach to ascertain ascorbic acid concentration in many samples since its consumption from the daily food should be in the proper quantity. Here, we present a colorimetric probe made of synthetic metal-organic frameworks (MOFs) that changes its color only when samples containing ascorbic acid are present. In this study, phenanthroline served as an organic ligand or linker while copper served as the core metal that formed bonds with it. Cu-Phen MOF color fluctuations at 410 nm (from 408 nm to 412 nm) are linearly related to variations in light absorption. Moreover, as a substitute for spectrophotometry UV-visible, we have created a digital image-based colorimetry. The Cu-Phen MOFs’ color change has the maximum slope and linearity when the blue color intensity is used. The detection limit with high precision of 4.2% under ideal circumstances was 0.1 ppm. The established approach allowed for the exact and accurate assessment of ascorbic acid in genuine samples of star fruit (Averrhoa carambola L.).
References
Aguirre, M. Á., K. D. Long, A. Canals, and B. T. Cunningham (2019). Point-of-use Detection of Ascorbic Acid Using a Spectrometric Smartphone-Based System. Food Chemistry, 272; 141–147
Arya, S., M. Mahajan, and P. Jain (2000). Non-spectrophotometric Methods for the Determination of Vitamin C. Analytica Chimica Acta, 417(1); 1–14
Chen, F. F., Y. J. Zhu, Z. C. Xiong, and T. W. Sun (2017). Hydroxyapatite Nanowires@ Metal–Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidase Like Activity, and Derived Flexible Recyclable Test Paper. Chemistry-A European Journal, 23(14); 3328–3337
de Carvalho Oliveira, G., C. C. S. Machado, D. K. Inácio, J. F. da Silveira Petruci, and S. G. Silva (2022). Rgb Color Sensor for Colorimetric Determinations: Evaluation and Quantitative Analysis of Colored Liquid Samples. Talanta, 241; 123244
Du, L., W. Chen, P. Zhu, Y. Tian, Y. Chen, and C. Wu (2021). Applications of Functional Metal organic Frameworks in Biosensors. Biotechnology Journal, 16(2); 1900424
Eddy, D. R., A. Luthfiah, M. D. Permana, Y. Deawati, M. L. Firdaus, I. Rahayu, and Y. Izumi (2023). Rapid Probing of Self-Cleaning Activity on Polyester Coated by Titania–Natural Silica Nanocomposite Using Digital Image-Based Colorimetry. ACS Omega, 8(8); 7858–7867
Firdaus, M. L., W. Alwi, F. Trinoveldi, I. Rahayu, L. Rahmidar, and K. Warsito (2014). Determination of Chromium and Iron Using Digital Image-based Colorimetry. Procedia Environmental Sciences, 20; 298–304
Firdaus, M. L., A. Aprian, N. Meileza, M. Hitsmi, R. Elvia, L. Rahmidar, and R. Khaydarov (2019). Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors, 7(2); 25
Firdaus, M. L., H. Apriyoanda, I. Isnan, S. Wyantuti, and D. R. Eddy (2023). Quantitative Analysis of Cr (III) and Cr (VI) Using Gold Nanoparticles with UV-Vis Spectrometry and Smartphone Colorimetric-sensing. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(3); 722–730
Firdaus, M. L., I. Fitriani, S. Wyantuti, Y. W. Hartati, R. Khaydarov, J. A. Mcalister, H. Obata, and T. Gamo (2017). Colorimetric Detection of Mercury (II) Ion in Aqueous Solution Using Silver Nanoparticles. Analytical Sciences, 33(7); 831–837
Firdaus, M. L., A. S. Mashio, H. Obata, J. A. McAlister, and K. J. Orians (2018). Distribution of Zirconium, Hafnium, Niobium and Tantalum in the North Atlantic Ocean, North-eastern Indian Ocean and its Adjacent Seas. Deep Sea Research Part I: Oceanographic Research Papers, 140; 128–135
Firdaus, M. L., E. Saputra, S. M. Ginting, S. Wyantuti, D. R. Eddy, L. Rahmidar, and B. Yuliarto (2022). Smartphone Based Digital Image Colorimetry for Non-Enzymatic Detection of Glucose Using Gold Nanoparticles. Sensing and Bio-Sensing Research, 35; 100472
Frenich, A. G., M. H. Torres, A. B. Vega, J. M. Vidal, and P. P. Bolanos (2005). Determination of Ascorbic Acid and Carotenoids in Food Commodities by Liquid Chromatography with Mass Spectrometry Detection. Journal of Agricultural and Food Chemistry, 53(19); 7371–7376
Gaião Calixto, M., H. Alves Ramos, L. S. Veríssimo, V. Dantas Alves, A. C. D. Medeiros, F. H. Alencar Fernandes, and G. Veras (2023). Trends and Application of Chemometric Pattern Recognition Techniques in Medicinal Plants Analysis. Critical Reviews in Analytical Chemistry, 53(2); 326–338
Gazdik, Z., O. Zitka, J. Petrlova, V. Adam, J. Zehnalek, A. Horna, V. Reznicek, M. Beklova, and R. Kizek (2008). Determination of Vitamin C (ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. Sensors, 8(11); 7097–7112
Gusti, N., D. Oktarina, R. Elvia, E. Nursa’adah, R. W. Wardhana, A. Sudaryono, and M. L. Firdaus (2021). Facile Detection of Oil Adulteration Using UV-Visible Spectroscopy Coupled with Chemometrics Analysis. Science and Technology Indonesia, 6(1); 14–18
Iwase, H. (2000). Use of Nucleic Acids in the Mobile Phase for the Determination of Ascorbic Acid in Foods by High-Performance Liquid Chromatography with Electrochemical Detection. Journal of Chromatography A, 881(1-2); 327–330
Khalil, M. M., A. Shahat, A. Radwan, and M. El-Shahat (2016). Colorimetric Determination of Cu (II) Ions in Biological Samples Using Metal-organic Framework as Scaffold. Sensors and Actuators B: Chemical, 233; 272–280
Kou, X., L. Tong, Y. Shen, W. Zhu, L. Yin, S. Huang, F. Zhu, G. Chen, and G. Ouyang (2020). Smartphone-assisted Robust Enzymes@ MOFs-based Paper Biosensor for Point-of-care Detection. Biosensors and Bioelectronics, 156; 112095
Krishnan, A., T. S. Sreeremya, and S. Ghosh (2016). SizeTunable Hydrophilic Cerium Oxide Nanoparticles as a ‘turn-on’fluorescence Sensor for the Rapid Detection of Ultralow Concentrations of Vitamin C. RSC Advances, 6(58); 53550–53559
Li, C., Z. Guo, S. Pu, C. Zhou, X. Cheng, R. Zhao, and N. Jia (2023). Molybdenum Disulfide Integrated Iron Organic Framework Hybrid Nanozyme-Based Aptasensor for Colorimetric Detection of Exosomes. Biosensors, 13(8); 800
Lim, Y. Y., T. T. Lim, and J. J. Tee (2007). Antioxidant Properties of Several Tropical Fruits: A Comparative Study. Food Chemistry, 103(3); 1003–1008
Masawat, P., A. Harfield, and A. Namwong (2015). An iPhone-based Digital Image Colorimeter for Detecting Tetracycline in Milk. Food Chemistry, 184; 23–29
Masawat, P., T. Yenkom, C. Sitsirat, and T. Thongmee (2022). Smartphone-Based Digital Image Colorimetry for Determination of Iron in Cereals and Crispy Seaweed Using Terminalia Chebula Retz. Extract as a Natural Reagent. Analytical Methods, 14(43); 4321–4329
Meelapsom, R., W. Rattanakaroonjit, A. Prakobkij, N. Malahom, S. Supasorn, S. Ruangchai, and P. Jarujamrus (2022). Smartphone-Assisted Colorimetric Determination of Iron Ions in Water by Using Anthocyanin from Ruellia Tuberosa L. as a Green Indicator and Application for Hands-on Experiment Kit. Journal of Chemical Education, 99(4); 1660–1671
Muthu, N., S. Y. Lee, K. K. Phua, and S. J. Bhore (2016). Nutritional, Medicinal and Toxicological Attributes of Star Fruits (Averrhoa carambola L.): A Review. Bioinformation, 12(12); 420
Permana, M. D., L. K. Sakti, A. Luthfiah, M. L. Firdaus, T. Takei, D. R. Eddy, and I. Rahayu (2023). A Simple Methods for Determination of Methylene Blue using Smartphone Based as Digital Image Colorimetry. Trends in Sciences, 20(4); 5149–5149
Pisoschi, A. M., A. Pop, G. P. Negulescu, and A. Pisoschi (2011). Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules, 16(2); 1349–1365
Rahmidar, L. and D. G. Syarif (2022). A Facile Approach for Preparing Zr-BDC and Zr-BDC-NH2 MOFs Using Solvothermal Method. Journal of Physics: Conference Series, 2243(1); 012055
Saputra, E. and M. L. Firdaus (2021). Digital image processing using Matlab and imageJ. Proceeding International Conference on Science (ICST), 2; 196–202
Shen, L., J. A. Hagen, and I. Papautsky (2012). Point-of-care Colorimetric Detection with a Smartphone. Lab on a Chip, 12(21); 4240–4243
Tan, Y., Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, and X. Zhang (2019). A New MOFs/polymer Hybrid Membrane: MIL-68 (Al)/PVDF, Fabrication and Application in High-efficient Removal of p nitrophenol and Methylene Blue. Separation and Purification Technology, 215; 217–226
Vermeir, S., M. Hertog, A. Schenk, K. Beullens, B. Nicolai, and J. Lammertyn (2008). Evaluation and Optimization of High-Throughput Enzymatic Assays for Fast L-Ascorbic Acid Quantification in Fruit and Vegetables. Analytica chimica acta, 618(1); 94–101
Wang, H.-S. (2017). Metal–Organic Frameworks for Biosensing and Bioimaging Applications. Coordination Chemistry Reviews, 349; 139–155
Wang, X., G. Jia, Y. Yu, Y. Gao, W. Zhang, H. Wang, Z. Cao, and J. Liu (2015). A New Homogeneous Electrocatalyst for Electrochemical Carbonylation of Methanol to Dimethyl Carbonate. Quimica Nova, 38; 298–302
Xu, S., H. Kong, and R. Zhang (2020). Visible-Light-Induced, UiO-67-Ru-Catalyzed Oxidative Cross Coupling for Constructing ???? -Acetylamino Acrylosulfones. Tetrahedron Letters, 61(11); 151629
Yadav, P., H. Laddha, M. Agarwal, and R. Gupta (2022). Fun with Smartphones: Handy Solution for Quantification of Debilitating Fluoride Ions in Drinking Water. Journal of Chemical Education, 99(7); 2677–2683
Zarei, K. and S. Moghaddary (2015). Sensitive Spectrophotometric Determination of Ascorbic Acid in Drugs and Foods Using Surface Plasmon Resonance Band of Silver Nanoparticles. Cogent Chemistry, 1(1); 1109172
Zhang, X., J. Qiao, J. Zhao, D. Xu, F. Wang, C. Liu, Y. Jiang, L. Wu, P. Cui, L. Lv, et al. (2019). High efficiency Electromagnetic Wave Absorption of Cobalt-decorated NH2- UIO-66-derived Porous ZrO2/C. ACS Applied Materials & Interfaces, 11(39); 35959–35968
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.