A Study of the Magnetic Properties and Structure of Heusler Alloys Prepared by Arc-Melting Technique

N. A. Khalefa

Abstract

Heusler alloys were prepared in this study using the Arc-Melting method in which 30 g of the Arc-melting pure elements were combusted in an Argon arc furnace. Saturation magnetization, X-ray diffraction (XRD) analysis, and scanning electron microscope (SEM) were used to characterize the prepared alloys in terms of the compositions (Co2TiZ), where Z= Al, Ge, Sb are related IVB sub-group metals. In this work, the specimens containing Ge and Ti have fully Ferro magnetically order and L21 chemical structure with magnetism due to the magnetic moments attributed to the Co site. The Heusler alloys containing IIB or IVB sub-group metals such as Al, Ti, or Ge behave ferromagnetism, with the magnetic moments being attributed to the magnetic moments of the Co sites. Heusler alloys containing the group IVB element such as Sb exhibited vacant chemical effects with Co sites, and they also contain some paramagnetic compounds. Heusler alloys with Sb element exhibited paramagnetic behavior with vacant chemical order. Alloys demonstrate different magnetic properties as a result of temperature change and exchange interaction with atomic structure.

References

Bachagha, T. and J. Suñol (2023). All-d-Metal Heusler Alloys: A Review. Metals, 13(1); 111

Berenson, G. S., B. Radhakrishnamurthy, S. R. Srinivasan, P. Vijayagopal, E. R. Dalferes Jr, and C. Sharma (1984). Recent Advances in Molecular Pathology: Carbohydrate-Protein Macromolecules and Arterial Wall Integrity-A Role in Atherogenesis. Experimental and Molecular Pathology, 41(2); 267–287

Chauhan, B., R. Kumar, K. Jadhav, and M. Singh (2004). Magnetic Study of Substituted Mg–Mn Ferrites Synthesized by Citrate Precursor Method. Journal of Magnetism and Magnetic Materials, 283(1); 71–81

Chen, X., R. Podloucky, and P. Rogl (2006). Ab Initio Prediction of Half-Metallic Properties for the Ferromagnetic Heusler Alloys CO2 M Si (M = Ti, V, Cr). Journal of Applied Physics, 100(11)

Cugini, F., S. Chicco, F. Orlandi, G. Allodi, P. Bonfá, V. Vezzoni, O. Miroshkina, M. Gruner, L. Righi, S. Fabbrici, et al. (2022). Effective Decoupling of Ferromagnetic Sublattices by Frustration in Heusler Alloys. Physical Review B, 105(17); 174434

Galanakis, I., P. Dederichs, and N. Papanikolaou (2002). Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys. Physical Review B, 66(17); 174429

Graf, T., C. Felser, and S. S. Parkin (2011). Simple Rules for the Understanding of Heusler Compounds. Progress in Solid State Chemistry, 39(1); 1–50

Hamri, B. (2016). Investigation Théorique Des Propriétés Structurales, électroniques Et Magnétiques Des Alliages Heusler Ti2VZ (Z = Ge, Sn, Pb). Ph.D. thesis

Heczko, O., H. Seiner, and S. Fähler (2022). Coupling between Ferromagnetic and Ferroelastic Transitions and Ordering in Heusler Alloys Produces New Multifunctionality. MRS Bulletin, 47(6); 618–627

Hu, J., S. Granville, and H. Yu (2020). Spin-Dependent Thermoelectric Transport in Cobalt-Based Heusler Alloys. Annalen Der Physik, 532(11); 1900456

Jin, T. and Y. Jung (2022). Recent Progress in Computational Discovery of Heusler Alloys. Bulletin of the Korean Chemical Society, 43(4); 484–491

Khalefaa, N. (2019). Effect of Annealing Treatment Processes on Structural and Magnetic Properties for Some Invar Alloys. International Journal of Engineering Research and Technology, 12(1); 102–106

Kotliar, G., S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. Marianetti (2006). Electronic Structure Calculations with Dynamical Mean-Field Theory. Reviews of Modern Physics, 78(3); 865

Lee, N., D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon (2015). Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 115(19); 10637–10689

Ma, L., W. Wang, J. Lu, J. Li, C. Zhen, D. Hou, and G. Wu (2011). Coexistence of Reentrant-Spin-Glass and Ferromagnetic Martensitic Phases in the Mn2Ni1.6Sn0.4 Heusler Alloy. Applied Physics Letters, 99(18)

Marathe, M. and H. C. Herper (2023). Exploration of All3 d Heusler Alloys for Permanent Magnets: An ab Initio Based High-Throughput Study. Physical Review B, 107(17); 174402

Pullar, R. C. (2012). Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 57(7); 1191–1334

Rogl, G. and P. F. Rogl (2023). Development of Thermoelectric Half-Heusler Alloys over the Past 25 Years. Crystals, 13(7); 1152

Ruban, A. V., S. Khmelevskyi, P. Mohn, and B. Johansson (2007). Magnetic State, Magnetovolume Effects, and Atomic Order in Fe65 Ni35 Invar Alloy: A First Principles Study. Physical Review B, 76(1); 014420

Sanvito, S., C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman, M. Venkatesan, M. Coey, and S. Curtarolo (2017). Accelerated Discovery of New Magnets in the Heusler Alloy Family. Science advances, 3(4); e1602241

Tavares, S., K. Yang, and M. A. Meyers (2023). Heusler Alloys: Past, Properties, New Alloys, and Prospects. Progress in Materials Science, 132; 101017

Vinogradov, A., T. Ishida, K. Kitagawa, and V. Kopylov (2005). Effect of Strain Path on Structure and Mechanical Behavior of Ultra-Fine Grain Cu–Cr Alloy Produced by EqualChannel Angular Pressing. Acta Materialia, 53(8); 2181–2192

Welzmiller, S., P. Urban, F. Fahrnbauer, L. Erra, and O. Oeckler (2013). Determination of the Distribution of Elements with Similar Electron Counts: A Practical Guide for Resonant X-Ray Scattering. Journal of Applied Crystallography, 46(3); 769–778

Zawar, S., S. Atiq, M. Tabasum, S. Riaz, and S. Naseem (2019). Highly Stable Dielectric Frequency Response of Chemically Synthesized Mn-Substituted ZnFe2O4. Journal of Saudi Chemical Society, 23(4); 417–426

Zhang, Q., M. Qian, and X. Zhang (2022). Magneto-Structural Transition and Refrigeration Property in All-D-Metal Heusler Alloys: A Critical Review. Journal of Solar Energy Research Updates, 9; 52–69

Zhou, X., H. Kunkel, G. Williams, S. Zhang, and X. Desheng (2006). Phase Transitions and the Magnetocaloric Effect in Mn Rich Ni–Mn–Ga Heusler Alloys. Journal of Magnetism and Magnetic Materials, 305(2); 372–376

Authors

N. A. Khalefa
najm.abdullah@uoa.edu.iq (Primary Contact)
Khalefa, N. A. (2024). A Study of the Magnetic Properties and Structure of Heusler Alloys Prepared by Arc-Melting Technique. Science and Technology Indonesia, 9(1), 36–42. https://doi.org/10.26554/sti.2024.9.1.36-42

Article Details