Studying the Structure Properties of Copper Nanoparticles Prepared by Chemical Reduction Method

Noora H. Al-Zobiadi, Ammar A. Habeeb, Awatif S. Jasim

Abstract

The chemical reduction method (CRM) can produce high purity nanoparticles, it is a down-top chemical method based on the principle of salt reduction, this method is used in this work to synthesis copper nanoparticals (CuPNs) by use different concentrations of copper nitrate. The properties of the prepared nanoparticles were studied by fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy were used to measure the absorbance spectra of the produced particles. According to the scanning electron microscope (SEM), the particles’ diameters range from (61.64 to 49.25) nm. According to X-ray diffraction, the particles exhibit a face monoclinic crystal structure (FCC). According to the transmission electron microscope findings, the particles are asymmetrically spherical in shape.

References

Ahmad (2010). The Effect of Thickness on The Optical and Structural Properties of Copper Oxide The Nano- Grain Size. Thesis, College of Education, Al-Mustansiriya University

Alzahrani, E. (2018). Chitosan Membrane Embedded with ZnO/CuO Nanocomposites for the Photodegradation of Fast Green Dye Under Artificial and Solar Irradiation. Analytical Chemistry Insights, 13; 1177390118763361

Benassai, E., M. Del Bubba, C. Ancillotti, I. Colzi, C. Gonnelli, N. Calisi, M. C. Salvatici, E. Casalone, and S. Ristori (2021). Green and Cost-effective Synthesis of Copper Nanoparticles by Extracts of Non-edible and Waste Plant Materials from Vaccinium Species: Characterization and Antimicrobial Activity. Materials Science and Engineering: C, 119; 111453

Brycki, B., A. Szulc, and M. Babkova (2020). Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents. Applied Sciences, 11(1); 154

Duan, H., D. Wang, and Y. Li (2015). Green Chemistry for Nanoparticle Synthesis. Chemical Society Reviews, 44(16); 5778–5792

Gondal, M., T. F. Qahtan, M. A. Dastageer, T. A. Saleh, Y. W. Maganda, and D. H. Anjum (2013). Effects of Oxidizing Medium on the Composition, Morphology and Optical Properties of Copper Oxide Nanoparticles Produced by Pulsed Laser Ablation. Applied Surface Science, 286; 149–155

Harada, M., M. Yamamoto, and M. Sakata (2020). Temperature Dependence on the Size Control of Palladium Nanoparticles by Chemical Reduction in Nonionic Surfactant/ionic Liquid Hybrid Systems. Journal of Molecular Liquids, 311; 113255

Hawthorne, J., C. Musante, S. K. Sinha, and J. C. White (2012). Accumulation and Phytotoxicity of Engineered Nanoparticles To Cucurbita Pepo. International Journal of Phytoremediation, 14(4); 429–442

He, X., D. P. Yang, X. Zhang, M. Liu, Z. Kang, C. Lin, N. Jia, and R. Luque (2019). Waste Eggshell Membranetemplated CuO-ZnO Nanocomposites with Enhanced Adsorption, Catalysis and Antibacterial Properties for Water Purification. Chemical Engineering Journal, 369; 621–633

Huang, J., J. Zhou, J. Zhuang, H. Gao, D. Huang, L. Wang, W. Wu, Q. Li, D. P. Yang, and M. Y. Han (2017). Strong Near-infrared Absorbing and Biocompatible Cus Nanoparticles for Rapid and Efficient Photothermal Ablation of Grampositive and-negative Bacteria. ACS Applied Materials & Interfaces, 9(42); 36606–36614

Jardón-Maximino, N., M. Pérez Alvarez, G. Cadenas Pliego, L. E. Lugo Uribe, C. Cabello Alvarado, J. M. Mata Padilla, and E. D. Barriga Castro (2021). Synthesis of Copper Nanoparticles Stabilized With Organic Ligands and Their Antimicrobial Properties. Polymers, 13(17); 2846

Jayaramudu, T., K. Varaprasad, R. D. Pyarasani, K. K. Reddy, K. D. Kumar, A. Akbari-Fakhrabadi, R. Mangalaraja, and J. Amalraj (2019). Chitosan Capped Copper Oxide/copper Nanoparticles Encapsulated Microbial Resistant Nanocomposite Films. International Journal of Biological Macromolecules, 128; 499–508

Johnson, M. E., S. Ostroumov, J. Tyson, and B. Xing (2011). Study of the Interactions Between Elodea canadensis and CuO Nanoparticles. Russian Journal of General Chemistry, 81; 2688–2693

Karthik, P. and S. P. Singh (2015). Copper Conductive Inks: Synthesis and Utilization in Flexible Electronics. RSC Advances, 5(79); 63985–64030

Khalid, H., S. Shamaila, N. Zafar, R. Sharif, J. Nazir, M. Rafique, S. Ghani, and H. Saba (2016). Antibacterial Behavior of Laser-ablated Copper Nanoparticles. Acta Metallurgica Sinica (English Letters), 29; 748–754

Maisterrena Epstein, R., S. Camacho-López, L. Escobar-Alarcón, and M. Camacho-López (2007). Nanosecond Laser Ablation of bulk Al, Bronze, and Cu: Ablation Rate Saturation and Laser-induced Oxidation. Superficies y vacío, 20(3); 1–5

Majumdar, T. D., M. Singh, M. Thapa, M. Dutta, A. Mukherjee, and C. K. Ghosh (2019). Size-dependent Antibacterial Activity of Copper Nanoparticles Against Xanthomonas oryzae pv. oryzae–A Synthetic and Mechanistic Approach. Colloid and Interface Science Communications, 32; 100190

Mallik, M., S. Monia, M. Gupta, A. Ghosh, M. P. Toppo, and H. Roy (2020). Synthesis and Characterization Of Cu2O Nanoparticles. Journal of Alloys and Compounds, 829; 154623

Moniri, S., M. Ghoranneviss, M. R. Hantehzadeh, and M. A. Asadabad (2017). Synthesis and Optical Characterization of Copper Nanoparticles Prepared by Laser Ablation. Bulletin of Materials Science, 40; 37–43

Nagar, N. and V. Devra (2018). Green Synthesis and Characterization of Copper Nanoparticles Using Azadirachta Indica Leaves. Materials Chemistry and Physics, 213; 44–51

Nakamura, S., M. Sato, Y. Sato, N. Ando, T. Takayama, M. Fujita, and M. Ishihara (2019). Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. International Journal of Molecular Sciences, 20(15); 3620

Patil, S. A., C. H. Ryu, and H. S. Kim (2018). Synthesis and Characterization of Copper Nanoparticles (Cu-Nps) Using Rongalite as Reducing Agent and Photonic Sintering of Cu-Nps Ink for Printed Electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 5; 239–245

Rashid, S. N., A. S. Jasim, and K. A. Aadimb (2022). Influence of Number of Pulses on Characterization of Nanoparticles of Copper and its Oxides Synthesized by Nd: YAG Laser Ablation Technique and its Antibacterial Activity. NeuroQuantology, 20(3); 150–159

Seo, Y., J. Hwang, E. Lee, Y. J. Kim, K. Lee, C. Park, Y. Choi, H. Jeon, and J. Choi (2018). Engineering Copper Nanoparticles Synthesized on the Surface of Carbon Nanotubes for Anti-Microbial and Anti-Biofilm Applications. Nanoscale, 10(33); 15529–15544

Vinod, M. and K. Gopchandran (2014). Au, Ag and Au: Ag Colloidal Nanoparticles Synthesized by Pulsed Laser Ablation as SERS Substrates. Progress in Natural Science: Materials International, 24(6); 569–578

Wu, R., Z. Ma, Z. Gu, and Y. Yang (2010). Preparation and Characterization of CuO Nanoparticles with Different Morphology Through a Simple Quick precipitation Method in DMAC–water Mixed Solvent. Journal of Alloys and Compounds, 504(1); 45–49

Xu, J., K. Yu, J. Wu, D. Shang, L. Li, and Z. Zhu (2009). Synthesis, Field Emission and Humidity Sensing Characteristics of Honeycomb-like CuO. Journal of Physics D: Applied Physics, 42(7); 075417

Zahoor, M., N. Nazir, M. Iftikhar, S. Naz, I. Zekker, J. Burlakovs, F. Uddin, A. W. Kamran, A. Kallistova, and N. Pimenov (2021). A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water, 13(16); 2216

Zhi Ang, J., C. Jiang Tao, W. Jun, Z. Ren Fu, Y. De, Z. Fei, and Y. Peng Xun (2009). CuO Nanosheets Synthesized by Hydrothermal Process. Chinese Physics Letters, 26(8); 086202

Zhou, K., R. Wang, B. Xu, and Y. Li (2006). Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes. Nanotechnology, 17(15); 3939

Authors

Noora H. Al-Zobiadi
noora.h.shallal.phys505@st.tu.edu.iq (Primary Contact)
Ammar A. Habeeb
Awatif S. Jasim
Al-Zobiadi, N. H., Habeeb, A. A., & S. Jasim, A. (2023). Studying the Structure Properties of Copper Nanoparticles Prepared by Chemical Reduction Method. Science and Technology Indonesia, 8(4), 640–646. https://doi.org/10.26554/sti.2023.8.4.640-646

Article Details