Study on Crystal Structure, Surface Area, and Energy Gap Behaviors of Nanotitania Polymorphs Prepared Using Monoethanolamine

Posman Manurung, Renita Maharani, Dita Rahmayanti, Yanti Yulianti, Junaidi, Ronius Marjunus


Polymorphous nanotitania samples were prepared from titanium butoxide (TTB) as a precursor using sol-gel processing in ethanol as a solvent, without and with monoethanolamine (MEA). The experiments used 5.25 mL TTB and MEA with varied volumes of 0.5, 1.0, 1.5, and 2.0 mL. The sample without MEA was specified as sample A, and the samples produced using MEA were specified as samples B, C, D, and E, respectively. All samples were calcined at 500 °C for 4 h and then collected data by X-ray Diffraction (XRD), the Brunauer-Emmett-Teller (BET) method used to analyze Surface Area Analyzer (SAA), Transmission Electron Microscopy (TEM), Raman Spectroscopy, and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The results of XRD characterization indicate that samples A and B form anatase phase, while samples C and D are composed of anatase, brookite, and rutile phases, and sample E is consisted of anatase and brookite phases with weight percentages of (94.53 ± 1.72) % and (5.47 ± 0.36) %, respectively. The presence of the three phases of titania is also confirmed by Raman spectroscopy analysis, which showed anatase peaks at 146, 197, 398, and 513 cm-1, brookite peaks at 245 and 402 cm-1, and rutile peaks at 319, 436, and 612 cm-1. According to XRD, the samples have the particle size in the range of 14-19 nm. A representative sample (sample C) was also characterized using TEM, revealing a particle size of 16.0 ± 0.3 nm. This representative sample revealed the largest surface area of 172.2 m2/g, as seen by BET, and the lowest energy gap of 3.03 eV.


Abdel Azim, S., A. Aboul Gheit, S. Ahmed, D. El Desouki, and M. Abdel Mottaleb (2014). Preparation and Application of Mesoporous Nanotitania Photocatalysts Using Different Templates and Ph Media. International Journal of Photoenergy, 2014; 1–11

Bakardjieva, S., V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, and N. Petrova (2006). Transformation of Brookite-Type TiO2 Nanocrystals to Rutile: Correlation between Microstructure and Photoactivity. Journal of Materials Chemistry, 16(18); 1709–1716

Bidaye, P. P. and J. B. Fernandes (2019). A Rapid and Facile Synthesis Method for Nanosize Rutile Phase TiO2 with High Photocatalytic Activity. Green and Sustainable Chemistry, 9(2); 27–37

Burczyk, B., K. A. Wilk, A. Sokołowski, and L. Syper (2001). Synthesis and Surface Properties of
N-Alkyl-N-Methylgluconamides and N-Alkyl-N-Methyllactobionamides. Journal of Colloid and Interface Science, 240(2); 552–558

Byranvand, M. M., A. Nemati Kharat, L. Fatholahi, and Z. Malekshahi Beiranvand (2013). A Review on Synthesis of Nano-TiO2 Via Different Methods. Journal of Nanostructures, 3(1); 1–9

Chaure, N., A. Ray, and R. Capan (2005). Sol-Gel Derived Nanocrystalline Titania Thin Films on Silicon. Semiconductor Science and Technology, 20(8); 788

Dastan, D., N. Chaure, and M. Kartha (2017). Surfactants Assisted Solvothermal Derived Titania Nanoparticles: Synthesis and Simulation. Journal of Materials Science: Materials in Electronics, 28(11); 7784–7796

Dette, C., M. A. Pérez Osorio, C. S. Kley, P. Punke, C. E. Patrick, P. Jacobson, F. Giustino, S. J. Jung, and K. Kern (2014). TiO2 Anatase with a Bandgap in the Visible Region. Nano Letters, 14(11); 6533–6538

Djerdj, I. and A. Tonejc (2006). Structural Investigations of Nanocrystalline TiO2 Samples. Journal of Alloys and Compounds, 413(1-2); 159–174

Fretwell, R. and P. Douglas (2001). An Active, Robust and Transparent Nanocrystalline Anatase TiO2 Thin Film-Preparation, Characterisation and the Kinetics of Photodegradation of Model Pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 143(2-3); 229–240

Galkina, O., V. Vinogradov, A. Agafonov, and A. Vinogradov (2011). Surfactant-Assisted Sol-Gel Synthesis of TiO2 with Uniform Particle Size Distribution. International Journal of Inorganic Chemistry, 2011; 1–8

Ge, M., J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, and K. Q. Zhang (2017). A Review of TiO2 Nanostructured Catalysts for Sustainable H2 Generation. International Journal of Hydrogen Energy, 42(12); 8418–8449

Golubović, A., M. Šćepanović, A. Kremenović, S. Aškrabić, V. Berec, Z. Dohčević Mitrović, and Z. Popović (2009). Raman Study of the Variation in Anatase Structure of TiO2 Nanopowders Due to the Changes of Sol-Gel Synthesis Conditions. Journal of Sol-Gel Science and Technology, 49; 311–319

González Anota, D. E., S. P. Paredes Carrera, R. M. Pérez Gutierrez, B. Arciniega-Caballero, R. Borja Urby, J. C. Sánchez-Ochoa, and E. Rojas García (2023). Green Synthesis by Microwave Irradiation of TiO2 Using Cinnamomum Verum and the Application in Photocatalysis. Journal of Chemistry, 2023; 1–17

Howard, C., T. Sabine, and F. Dickson (1991). Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallo-graphica Section B: Structural Science, 47(4); 462–468

Hu, Y., H. L. Tsai, and C. L. Huang (2003). Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. Journal of the European Ceramic Society, 23(5); 691–696

Hunter, B. (1997). Rietica for Windows Version 4.0. IUCR Powder Diffraction, 22(1)

Huseynov, E., A. Garibov, and R. Mehdiyeva (2016). TEM and SEM Study of Nano SiO2 Particles Exposed to Influence of Neutron Flux. Journal of Materials Research and Technology, 5(3); 213-218

Makuła, P., M. Pacia, and W. Macyk (2018). How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. The Journal of Physical Chemistry Letters, 9(23); 6814–6817

Manurung, P., R. Situmeang, E. Ginting, and I. Pardede (2015). Synthesis and Characterization of Titania-Rice Husk Silica Composites As Photocatalyst. Indonesian Journal of Chemistry, 15(1); 36-42

Manurung, P., R. Situmeang, P. Sinuhaji, and S. Sembiring (2020). Effect of Sulfur Doped Nanotitania for Degradation of Remazol Yellow and Phenol. Asian Journal of Chemistry, 32(12); 3019–3023

Maziarz, W. (2019). TiO2/SnO2 and TiO2/CuO Thin Film Nano-Heterostructures As Gas Sensors. Applied Surface Science, 480; 361–370

Meagher, E. and G. A. Lager (1979). Polyhedral Thermal Expansion in the TiO2 Polymorphs; Refinement of the Crystal Structures of Rutile and Brookite at High Temperature. The Canadian Mineralogist, 17(1); 77–85

Mutuma, B. K., G. N. Shao, W. D. Kim, and H. T. Kim (2015). Sol-Gel Synthesis of Mesoporous Anatase-Brookite and Anatase-Brookite-Rutile TiO2 Nanoparticles and Their Photocatalytic Properties. Journal of Colloid and Interface Science, 442; 1–7

Myint, Y. W., T. T. Moe, W. Y. Linn, A. Chang, and P. P. Win (2017). The Effect of Heat Treatment on Phase Transformation and Morphology of Nano-Crystalline Titanium Dioxide (TiO2). International Journal of Scientific & Technology Research, 6(6); 293–299

Nagaveni, K., M. Hegde, N. Ravishankar, G. Subbanna, and G. Madras (2004). Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir, 20(7); 2900–2907

Park, J., J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon (2007). Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition, 46(25); 4630–4660

Presti, L. L., V. Pifferi, G. Di Liberto, G. Cappelletti, L. Falciola, G. Cerrato, and M. Ceotto (2021). Direct Measurement and Modeling of Spontaneous Charge Migration across Anatase-Brookite Nanoheterojunctions. Journal of Materials Chemistry A, 9(12); 7782–7790

Rezaee, M., S. M. M. Khoie, and K. H. Liu (2011). The Role of Brookite in Mechanical Activation of Anatase-to-Rutile Transformation of Nanocrystalline TiO2: An Xrd and Raman Spectroscopy Investigation. CrystEngComm, 13(16); 5055–5061

Sahni, S., S. B. Reddy, and B. Murty (2007). Influence of Process Parameters on the Synthesis of Nano-Titania by Sol-Gel Route. Materials Science and Engineering: A, 452; 758–762

Shirzad Taghanaki, N., N. Keramati, and M. Mehdipour Ghazi (2021). Photocatalytic Degradation of Ethylbenzene by Nano Photocatalyst in Aerogel form Based on Titania. Iranian Journal of Chemistry and Chemical Engineering, 40(2); 525–537

Símonarson, G., S. Sommer, A. Lotsari, B. Elgh, B. B. Iversen, and A. E. Palmqvist (2019). Evolution of the Polymorph Selectivity of Titania Formation under Acidic and LowTemperature Conditions. ACS omega, 4(3); 5750–5757

Swanson, H. E., H. F. McMurdie, M. C. Morris, and E. H. Evans (1969). Standard X-ray Diffraction Powder Patterns, volume 25. United States. Government Printing Office

Swanson, H. E., M. C. Morris, E. H. Evans, and L. Ulmer (1964). Standard X-ray Diffraction Powder Patterns, volume 25. United States. Government Printing Office

Xia, T., J. W. Otto, T. Dutta, J. Murowchick, A. N. Caruso, Z. Peng, and X. Chen (2013). Formation of TiO2 Nanomaterials Via Titanium Ethylene Glycolide Decomposition. Journal of Materials Research, 28(3); 326–332

Yazid, S. A., Z. M. Rosli, and J. M. Juoi (2019). Effect of Titanium (IV) Isopropoxide Molarity on the Crystallinity and Photocatalytic Activity of Titanium Dioxide Thin Film Deposited Via Green Sol-Gel Route. Journal of Materials Research and Technology, 8(1); 1434–1439

Yu, J., A. L. Godiksen, A. Mamahkel, F. Søndergaard Pedersen, T. Rios Carvajal, M. Marks, N. Lock, S. B. Rasmussen, and B. B. Iversen (2020). Selective Catalytic Reduction of NO Using Phase-Pure Anatase, Rutile, and Brookite TiO2 Nanocrystals. Inorganic Chemistry, 59(20); 15324–15334

Zhang, H. and J. F. Banfield (1998). Thermodynamic Analysis of Phase Stability of Nanocrystalline Titania. Journal of Materials Chemistry, 8(9); 2073–2076

Zhang, J., Y. Song, F. Lu, W. Fei, Y. Mengqiong, L. Genxiang, X. Qian, W. Xiang, and L. Can (2011). Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2. Chinese Journal of Catalysis, 32(6-8); 983–991

Zhu, K. R., M. S. Zhang, Q. Chen, and Z. Yin (2005). Size and Phonon-Confinement Effects on Low Frequency Raman Mode of Anatase TiO2 Nanocrystal. Physics Letters A, 340(1-4); 220–227


Posman Manurung (Primary Contact)
Renita Maharani
Dita Rahmayanti
Yanti Yulianti
Ronius Marjunus
Manurung, P., Maharani, R., Rahmayanti, D., Yulianti, Y., Junaidi, & Marjunus, R. (2024). Study on Crystal Structure, Surface Area, and Energy Gap Behaviors of Nanotitania Polymorphs Prepared Using Monoethanolamine. Science and Technology Indonesia, 9(2), 345–353.

Article Details