Synthesis of Silver Nitrate by Evaporation Chemical Reduction Process as Potential Materials for Silver Nanowires Application
Abstract
In this study, we conducted the extraction of silver nitrate (AgNO3) using the chemical reduction evaporation method, involving silver metal (Ag) with a molarity of 7.716 M and nitric acid (HNO3). The heating process via evaporation was carried out at 85oC for 2 hours. Subsequently, the synthesis of silver nanowires (AgNWs) was performed using a 0.3 M of AgNO3 solution in ethylene glycol (EG), polyvinyl pyrrolidone (PVP), and Iron (III) Chloride hexahydrate (FeCl36H2O). XRD analysis of the AgNO3 sample revealed an orthorhombic crystal structure with a single AgNO3 phase peak. In AgNWs, three crystalline phases were observed, with the Ag phase being the most dominant. The average crystal size of AgNO3 and AgNWs was 109.42 nm and 22.06 nm, respectively. The average crystal size of the AgNO3 sample may be influenced by the aggregation between crystal nuclei during the heating process. XRF analysis indicated a 98.84% Ag concentration in AgNO3. SEM-EDS analysis showed that the AgNO3 sample had a non-aggregated morphological structure, with particle size measuring 49.46 μm and an overall AgNO3 purity of 92.68%. The SEM image of the AgNWs sample displayed a very homogeneous diameter of ∼200 nm with a length of around 10-20 μm. Meanwhile, AgNWs exhibited a morphology resembling rod-shaped wires with a purity of 68% for Ag.
References
Agrawal, S., M. Bhatt, S. K. Rai, A. Bhatt, P. Dangwal, and P. K. Agrawal (2018). Silver Nanoparticles and Its Potential Applications: A Review. Journal of Pharmacognosy and Phytochemistry, 7(2); 930–937
Asif, M., R. Yasmin, R. Asif, A. Ambreen, M. Mustafa, and S. Umbreen (2022). Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and Their Antibacterial Potential. Dose Response, 20(2); 1–11
Badán, J. A., E. Navarrete-Astorga, R. Henríquez, F. Martín, R. E. Marotti, J. R. Ramos-Barrado, and E. A. Dalchiele (2020). Optical Properties of Silver Nanoparticles Deposited onto Silicon Substrates by Different Soft-Solution Processing Techniques. Optical Materials, 100; 109651
Cao, L., Q. Huang, J. Cui, H. Lin, W. Li, Z. Lin, and P. Zhang (2020). Rapid and Facile Synthesis of High-Performance Silver Nanowires by a Halide-Mediated, Modified Polyol Method for Transparent Conductive Films. Nanomaterials, 10(6); 1139
De Yoreo, J. J. (2002). Principles of Crystal Nucleation and Growth. Reviews in Mineralogy and Geochemistry, 54(1); 57–93
Evans, J. S. O. and I. R. Evans (2021). Structure Analysis from Powder Diffraction Data: Rietveld Refinement in Excel. Journal of Chemical Education, 98(2); 495–505
Giri, A. K., B. Jena, B. Biswal, A. K. Pradhan, M. Arakha, S. Acharya, and L. Acharya (2022). Green Synthesis and Characterization of Silver Nanoparticles Using Eugenia Roxburghii DC. Extract and Activity Against Biofilm-Producing Bacteria. Scientific Reports, 12(1); 8383
Ha, H., C. Amicucci, P. Matteini, and B. Hwang (2022). Mini Review of Synthesis Strategies of Silver Nanowires and Their Applications. Colloid and Interface Science Communications, 50; 100663
Habashi, F. and K. Sora (1997). Handbook of Extractive Metallurgy. Wiley
Hennenkamp, J. R., K. M. Logsdon, B. L. Simpson, T. E. Walker, and P. C. Drake (1994). Silver Nitrate Produced by a Continuous Evaporative Crystallization Process. US Patent 5,360,602
Honey, S., H. M. Khan, M. E. Mazhar, J. Ahmad, H. Raza, I. Ahmad, J. Asim, S. Naseem, and M. Maaza (2022). Enhanced Optical Transmittance of Silver Nanowires via Gamma Rays Irradiation. Journal of King Saud University-Science, 34(5); 102058
Htwe, Y. Z. N., W. S. Chow, Y. Suda, and M. Mariatti (2019). Effect of Silver Nitrate Concentration on the Production of Silver Nanoparticles by Green Method. Materials Today: Proceedings, 17; 568–573
Imran, M., C. J. Ehrhardt, M. F. Bertino, M. R. Shah, and V. K. Yadavalli (2020). Chitosan Stabilized Silver Nanoparticles for the Electrochemical Detection of Lipopolysaccharide: A Facile Biosensing Approach for Gram-Negative Bacteria. Micromachines, 11(4); 413–417
Junaidi, L. Afriliani, P. Manurung, S. Sembiring, K. Triyana, and S. Hadi (2022). The Crystal Structure Analysis of Silver Nanowires Using Rietveld Method for Optoelectronic Application. Journal of Nano Research, 71; 1–12
Junaidi, M. W. Saputra, R. Marjunus, S. Sembiring, and S. Hadi (2021). The Quenching and Sonication Effect on the Mechanical Strength of Silver Nanowires Synthesized Using the Polyol Method. Molecules, 26(8); 2167
Khan, M. (2018). Silver Nanoparticles Fabrication, Characterization and Application. British Library
Kim, H. Y., K. Kim, J. Yang, and M. K. Choi (2024). High-Resolution Intaglio Transfer Printing of Silver Nanowires for Wearable Electrophysiological Sensors. Advanced Materials Technologies, 9(1); 1–8
Krishnamurthy (1977). Silver Nitrate, Pure, and Analytical Reagent. Technical Report 2214
Lakshmi, P. (2016). The Encyclopedia of Spices and Herbs. An Imprint of HarperCollinsPublisher
Liu, X. L., S. Han, S. B. Zhang, S. S. Zhou, N. Jiao, H. Y. Zhao, and J. Li (2020). One-Step Growth Method of Silver Nanowires in Aqueous Environment. Materials Research Express, 7(9); 095001
Mamuru, S. A. and M. Happy (2018). Interrogating the Electrochemical Potential of Senna Obtusifolia Mediated Biosynthesized Silver Nanoparticles. Journal of Nanoscience and Technology, 4(4); 427–430
Menamparambath, M. M., C. Muhammed Ajmal, K. Hee Kim, D. Yang, J. Roh, H. Cheol Park, C. Kwak, J. Y. Choi, and S. Baik (2015). Silver Nanowires Decorated with Silver Nanoparticles for Low Haze Flexible Transparent Conductive Films. Scientific Reports, 5; 1–3
Mozammel, M., S. K. Sardnezhaad, and E. Ahmadi (2006). Kinetics of Silver Dissolution in Nitric Acid from Ag-Au0.04-Cu0.10 and Ag-Cu0.23 Scraps. Journal of Materials Science and Technology, 22(5); 696–699
Özmetin, C., M. Çopur, M. M. Kocakerim, and S. Yapici (2001). Crystallization of Silver Nitrate from Saturated Silver Nitrate Solution in Nitric Acid. Indian Journal of Chemical Technology, 8(2); 112-119
Robinson, J., S. P. Munagala, A. Arjunan, N. Simpson, R. Jones, A. Baroutaji, L. T. Govindaraman, and I. Lyall (2022). Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applications. Materials, 15(21); 7563
Sembiring, S., A. Riyanto, I. Firdaus, Junaidi, and R. Situmeang (2022). Structure and Properties of Silver-Silica Composite Prepared From Rice Husk Silica and Silver Nitrate. Ceramics - Silikaty, 66(2); 167–177
Siddiqui, T., M. K. Zia, M. Muaz, H. Ahsan, and F. H. Khan (2023). Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Chemico-Physical Methods. IJCA (Indonesian Journal of Chemical Analysis), 6(2); 124–132
Villalpando, M., A. Saavedra-Molina, and G. Rosas (2020). A Facile Synthesis of Silver Nanowires and Their Evaluation in the Mitochondrial Membrane Potential. Materials Science and Engineering C, 114; 110973
Wiley, B., Y. Sun, and Y. Xia (2005). Polyol Synthesis of Silver Nanostructures: Control of Product Morphology with Fe(II) or Fe(III) Species. Langmuir, 21(18); 8077–8080
Xia, Y., Y. Xiong, B. Lim, and S. E. Skrabalak (2009). Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie - International Edition, 48(1); 60–103
Zaman, Y., M. Z. Ishaque, R. Sattar, M. M. Rehman, I. Saba, S. Kanwal, M. Akram, M. Shahzad, H. Kanwal, R. Qadir, and A. B. Siddique (2022). Antibacterial Potential of Silver Nanoparticles Synthesized Using Tri-Sodium Citrate via Controlled Exploitation of Temperature. Digest Journal of Nanomaterials and Biostructures, 17(3); 979–987
Zhang, R. and M. Engholm (2018). Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes. Nanomaterials, 8(8); 1–17
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.