Novel Micrococcus unila to Produce Glucosamine by Solid-state Fermentation of Shrimp Shell Waste
Abstract
This study aimed to assess glucosamine production through enzymatic activity, utilizing actinomycetes sourced from shrimp shell waste (SSW) in a solid-state fermentation (SSF) process. A total of 16 actinomycetes underwent chitinase activity screening, and the strain exhibiting the highest chitinolytic index was chosen for subsequent morphological and phylogenetic analyses. High Performance Liquid Chromatography (HPLC) was employed to analyze glucosamine produced from the bioconversion of SSW via SSF. Optimal conditions for glucosamine production were determined by varying time, pH, and temperature. Isolate 18D36-A2 showed the highest chitinolytic index of 1.02 in the 32-mm clean zone. Phylogenetic analysis revealed 97% similarity to the genus Micrococcus, identifying it as a novel Micrococcus unila strain 18D36-A2 and deposited in GenBank. This isolate effectively converted shrimp shells. The findings showcase the bioconversion of SSW to glucosamine through SSF using the Micrococcus unila 18D36-A2. Furthermore, this study establishes a foundation for future research on environmentally friendly and sustainable designs for glucosamine production.
References
Acharyabhatta, A., S. K. Kandula, and R. Terli (2013). Taxonomy and Polyphasic Characterization of Alkaline Amylase Producing Marine Actinomycete Streptomyces rochei BTSS 1001. International Journal of Microbiology, 2013; 276921
Annamalai, N., S. Giji, M. Arumugam, and T. Balasubramanian (2010). Purification and Characterization of Chitinase from Micrococcus sp. AG84 Isolated from Marine Environment. African Journal of Microbiology Research, 4(24); 2822–2827
Atalla, S. M. M., N. G. El Gamal, and H. M. Awad (2020). Chitinase of Marine Penicillium chrysogenum MH745129: Isolation, Identification, Production and Characterization as Controller for Citrus Fruits Postharvest Pathogens. Jordan Journal of Biological Sciences, 13(1); 19–28
Bertuzzi, D. L., T. B. Becher, N. M. R. Capreti, J. Amorim, I. D. Jurberg, J. D. Megiatto, Jr., and C. Ornelas (2018). General Protocol to Obtain D-Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Challenges, 2(11); 1800046
Conrozier, T. and T. Lohse (2022). Glucosamine as a Treatment for Osteoarthritis: What If It’s True? Frontiers in Pharmacology, 13; 820971
Food and Agriculture Organization (2023). Q1 January-March 2020 Issue, Global Farmed Shrimp Production Increased in 2022 despite Low Demand
Gupta, N., A. L. Kumar, S. Angural, and M. Rana (2017). Process Optimization of Extracellular Chitinase Production from Bacillus Sp. Isolated from Fish Waste Dumping Site. European Journal of Pharmaceutical and Medical Research, 4(9); 474–480
Hu, X., Z. Tian, X. Li, S. Wang, H. Pei, H. Sun, and Z. Zhang (2020). Green, Simple, and Effective Process for the Comprehensive Utilization of Shrimp Shell Waste. ACS Omega, 5(30); 19227–19235
Hunter, D. J. and S. Bierma-Zeinstra (2019). Osteoarthritis. The Lancet, 393(10182); 1745–1759
Islam, M. R., G. Tudryn, R. Bucinell, L. Schadler, and C. R. Picu (2017). Morphology and Mechanics of Fungal Mycelium. Scientific Reports, 7(1); 13070
Kaur, S. and G. S. Dhillon (2015). Recent Trends in Biological Extraction of Chitin from Marine Shell Wastes: A Review. Critical Reviews in Biotechnology, 35(1); 44–61
Kirchberger, P. C., K. M. Sefc, C. Sturmbauer, and S. Koblmüller (2014). Outgroup Effects on Root Position and Tree Topology in the AFLP Phylogeny of a Rapidly Radiating Lineage of Cichlid Fish. Molecular Phylogenetics and Evolution, 70; 57–62
Kotb, E., A. Hassan, A. I. Alghamdi, I. M. Ababutain, S. A. Aldakeel, S. K. Al-Zuwaid, B. M. Algarudi, S. M. Akgarudi, and A. A. Ahmed (2023). Screening for Chitin Degrading Bacteria in the Environment of Saudi Arabia and Characterization of the Most Potent Chitinase from Streptomyces variabilis Am1. Scientific Reports, 13(1); 38876
Krithika, S. and C. Chellaram (2016). Isolation, Screening, and Characterization of Chitinase Producing Bacteria from Marine Wastes. International Journal of Pharmacy and Pharmaceutical Sciences, 8(4); 34–36
Kurtböke, D. I. (2022). Correct Interpretation of Actinomycete Imagery Using Scanning Electron Microscopy. Microbiology Australia, 43(1); 28
Laila, A., F. Setiawan, W. Widyastuti, M. R. Fadhilah, A. Setiawan, N. L. Juliasih, W. A. Setiawan, E. Apriliana, P. Ahmadi, M. Arai, and J. Hendri (2023). Exploration and Biorefinery Antimicrobial Agent through Solid State Fermentation from Indonesia’s Marine Actinomycetes. Fermentation, 9(4); 334
Lv, X., P. Wang, T. Wang, J. Zhao, and Y. Zhang (2021). Development and Validation of an Improved 3-Methyl-2-Benzothiazolinone Hydrazone Method for Quantitative Determination of Reducing Sugar Ends in Chitooligosaccharides. Food Chemistry, 343; 128532
Montiel-Montoya, J., M. Valdez-Morales, C. Reyes, and H. J. Barrales-Cureño (2019). Sustainable Production with Obtaining Glucosamine from Crab Exoskeletons. Ciência Rural, 49(9); e20190021
Nord, C., J. J. Levenfors, J. Bjerketorp, C. Sahlberg, B. Guss, B. Öberg, and A. Broberg (2019). Antibacterial Isoquinoline Alkaloids from the Fungus Penicillium spathulatum Em19. Molecules, 24(24); 4616
Nurfikari, A. and W. de Boer (2021). Chitin Determination in Residual Streams Derived from Insect Production by LC-ECD and LC-MS/MS Methods. Frontiers in Sustainable Food Systems, 5; 795694
Raziq, A., M. Lateef, A. Ullah, H. Ullah, and M. W. Khan (2020). Single Cell Protein (SCP) Production and Potential Substrates: A Comprehensive Review. Pure and Applied Biology (PAB), 9(3); 1743–1754
Rozirwan, R., H. I. Muda, and T. Z. Ulqodry (2020). Short Communication: Antibacterial Potential of Actinomycetes Isolated from Mangrove Sediment in Tanjung Api-Api, South Sumatra, Indonesia. Biodiversitas, 21(12); 5723–5728
Setiawan, A., W. Widyastuti, A. Irawan, O. S. Wijaya, A. Laila, W. A. Setiawan, N. L. Juliasih, K. Nonaka, M. Arai, and J. Hendri (2021). Solid State Fermentation of Shrimp Shell Waste Using Pseudonocardia carboxydivorans 18A13O1 to Produce Bioactive Metabolites. Fermentation, 7(4); 247
Sun, W., F. Zhang, L. He, L. Karthik, and Z. Li (2015). Actinomycetes from the South China Sea Sponges: Isolation, Diversity, and Potential for Aromatic Polyketides Discovery. Frontiers in Microbiology, 6; 1048
Tamura, K., G. Stecher, and S. Kumar (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7); 3022–3027
Topić Popović, N. and V. Lorencin (2022). Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences, 13(1); 623
Wang, Y., H. Mo, Z. Hu, B. Liu, Z. Zhang, Y. Fang, X. Hou, S. Liu, and G. Yang (2022). Production, Characterization and Application of a Novel Chitosanase from Marine Bacterium Bacillus paramycoides BP-N07. Foods, 12(18); 3350
Widyastuti, W., F. Setiawan, C. Al Afandy, A. Irawan, A. Laila, N. L. Juliasih, W. A. Setiawan, M. Arai, J. Hendri, and A. Setiawan (2022). Antifungal Agent Chitooligosaccharides Derived from Solid-State Fermentation of Shrimp Shell Waste by Pseudonocardia antitumoralis 18D36-A1. Fermentation, 8(8); 353
Yafetto, L. (2022). Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon, 8(3); e09173
Zhou, X., Z. Cheng, L. Ran, X. Guo, Z. Liu, and P. Yu (2011). Determination of Glucosamine in Human Plasma by High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Source-Tandem Mass Spectrometry. Chromatography Research International, 2011; 815183
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.