Isolation and Characterization of Cellulose Microfibril (MFC) from Gracilaria sp. with Different Quality Grades

Nurhayati, Hari Eko Irianto, Agus Supriyanto, Rinta Kusumawati, Jamal Basmal, Ifah Munifah, Natalia Prodiana Setiawati, Wida Banar Kusumaningrum, Putri Amanda, Ahmad Nandang Roziafanto, Rini Riastuti, Muchamad Chalid

Abstract

The cellulose found in Gracilaria sp. has not been utilized optimally. This study investigated the characteristics of cellulose and cellulose microfibril (MFC) isolated from three grades of Gracilaria sp. Descriptive tests were performed to determine the quality of eachgrade, including observations on moisture content, ashcontent, CAW,andimpurities. The extraction process involved separating agar from Gracilaria sp., isolating cellulose using 10% NaOH, and bleaching cellulose with 3% NaOCl. The bleached cellulose was then ultrasonicated to produce MFC. Characterization was performed using FTIR, XRD, PSA, STA, DSC, and py-GC/MS. FTIR analysis indicated similar peaks for both cellulose forms but only differed in transmittance intensity. The crystallinity index from XRD analysis was 22–39% for raw Gracilaria sp., 25–46% for cellulose, and 68–89% for MFC. The particle size distribution of MFC mostly ranged between 200–500 nm, with 63.16% frequency. TG analysis showed cellulose decomposition with a Tonset of 231–260oC and a Tmax of 318–326oC. DSC analysis revealed that sonication enhances the polymer structure’s crystallization compared to pre-sonicated cellulose and raw material. The py-GC/MS analysis showed that D-allose and n-Hexadecanoic acid were the major components.

References

Aisy, L. A. R., T. Kemala, L. Suryanegara, and H. Purwaningsih (2024). Isolation and Characterization of Cellulose Nanofibrils (CNF) from Dates By-Product via Citric Acid Hydrolysis. Science and Technology Indonesia, 9(4): 818–827

Al-Asgah, N. A., E.-S. M. Younis, A.-W. A. Abdel-Warith, and F. S. Shamlol (2016). Evaluation of Red Seaweed Gracilaria arcuata as Dietary Ingredient in African Catfish, Clarias gariepinus. Saudi Journal of Biological Sciences, 23(2): 205–210

Al Wazzan, I. M., P. Wullandari, and A. Fauzi (2021). Effect of Dried Eucheuma cottonii Stored in Seaweed Storage Device in Its Quality. Jurnal Perikanan Universitas Gadjah Mada, 23(2): 137

AOAC International (2005). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, 18th edition

Badan Standardisasi Nasional (2015). SNI 8168:2015 Clean Anhydrous Weed (CAW) in Dried Seaweed. Badan Standardisasi Nasional

Baghel, R. S., C. R. K. Reddy, and R. P. Singh (2021). Seaweed-Based Cellulose: Applications, and Future Perspectives. Carbohydrate Polymers, 267: 118241

Bhutiya, P. L., N. Misra, R. M. Abdul, and H. S. Zaheer (2018). Nested Seaweed Cellulose Fiber Deposited with Cuprous Oxide Nanorods for Antimicrobial Activity. International Journal of Biological Macromolecules, 117: 435–444

Carrillo, F., X. Colom, J. J. Suñol, and J. Saurina (2004). Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres. European Polymer Journal, 40(9): 2229–2234

Chanchpara, A., T. P. Sahoo, A. K. Madhava, and H. T. Saravaia (2023). Non-Isothermal Kinetic Decomposition Characteristic of Gracilaria corticata Biomass and Its Biochar Utilization for Efficient Heavy Metals Remediation. BioEnergy Research, 17(2): 1055–1064

Chen, Y. W., H. V. Lee, J. C. Juan, and S.-M. Phang (2016). Production of New Cellulose Nanomaterial from Red Algae Marine Biomass Gelidium elegans. Carbohydrate Polymers, 151: 1210–1219

Chirayil, C. J., J. Joy, L. Mathew, M. Mozetic, J. Koetz, and S. Thomas (2014). Isolation and Characterization of Cellulose Nanofibrils from Helicteres isora Plant. Industrial Crops and Products, 59: 27–34

Ciancia, M., M. C. Matulewicz, and R. Tuvikene (2020). Structural Diversity in Galactans from Red Seaweeds and Its Influence on Rheological Properties. Frontiers in Plant Science, 11: 559986

Costa, D. S., T. S. L. Araújo, N. A. Sousa, L. K. M. Souza, D. M. Pacífico, F. B. M. Sousa, L. A. D. Nicolau, L. S. Chaves, F. C. N. Barros, A. L. P. Freitas, and J. V. R. Medeiros (2016). Sulphated polysaccharide isolated from the seaweed Gracilaria caudata exerts an antidiarrhoeal effect in rodents. Basic & Clinical Pharmacology & Toxicology, 118(6): 440–448

Da Costa, E., T. Melo, A. Moreira, C. Bernardo, L. Helguero, I. Ferreira, M. Cruz, A. Rego, P. Domingues, R. Calado, M. Abreu, and M. Domingues (2017). Valorization of lipids from Gracilaria sp. through lipidomics and decoding of antiproliferative and anti-inflammatory activity. Marine Drugs, 15(3): 62

Debbarma, J., R. B. Madhusudana, L. N. Murthy, S. Mathew, G. Venkateshwarlu, and C. N. Ravishankar (2016). Nutritional profiling of the edible seaweeds Gracilaria edulis, Ulva lactuca and Sargassum sp. Indian Journal of Fisheries, 63(3): 81–87

Dilamian, M. and B. Noroozi (2019). A combined homogenization-high intensity ultrasonication process for individualization of cellulose micro-nano fibers from rice straw. Cellulose, 26(10): 5831–5849

Doh, H., K. D. Dunno, and W. S. Whiteside (2020). Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films. Food Bioscience, 38: 100795

Filipova, I., V. Fridrihsone, U. Cabulis, and A. Berzins (2018). Synthesis of nanofibrillated cellulose by combined ammonium persulphate treatment with ultrasound and mechanical processing. Nanomaterials, 8(9): 640

Govindarajan, M. and G. Benelli (2017). A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. Journal of Cluster Science, 28(1): 15–36

Idris, N., E. Johannes, and Z. Dwyana (2022). Potential of hexadecanoic acid as antimicrobials in bacteria and fungi that cause decay in mustard greens Brassica juncea L. International Journal of Applied Biology, 6(2): 36–42

Insani, A. N., H. Hafiludin, and A. B. Chandra (2022). Utilization of Gracilaria sp. from Pamekasan waters as antioxidant. Juvenil: Jurnal Ilmiah Kelautan dan Perikanan, 3(1): 16–25

Jmel, M. A., N. Anders, G. Ben Messaoud, M. N. Marzouki, A. Spiess, and I. Smaali (2019). The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. Journal of Cleaner Production, 234: 1421–1427

Kallappa, P. J., P. G. Kalleshappa, B. B. Eshwarappa, S. Basavarajappa, V. S. Betageri, and B. K. Devendra (2023). Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies. International Nano Letters, 13(3–4): 261–272

Katili, R. A., F. A. Dali, and N. Yusuf (2019). Quality of dried seaweed Kappaphycus alvarezii with traditional drying methods from North Gorontalo. IOP Conference Series: Earth and Environmental Science, 278(1): 012039

Kaur, P., R. Agrawal, F. M. Pfeffer, R. Williams, and H. B. Bohidar (2023). Hydrogels in agriculture: Prospects and challenges. Journal of Polymers and the Environment, 31(9): 3701–3718

Kumar, P. S., M. Edwin, and A. J. Percy (2024). Comparative study on pyrolysis characteristics and kinetics of Indian almond fruit and Gracilaria changii seaweed by thermogravimetric analysis. Biomass Conversion and Biorefinery, 14(14): 15837–15852

Lin, Y.-C., S.-T. Yeh, C.-C. Li, L.-L. Chen, A.-C. Cheng, and J.-C. Chen (2011). An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. Fish & Shellfish Immunology, 31(6): 1239–1246

Lubis, R., Riyanto, B. Wirjosentono, Eddyanto, and A. Septevani (2019). Extraction and characterization of cellulose fiber of durian rinds from North Sumatera as the raw material for textile fiber. Journal of Physics: Conference Series, 1232(1): 012017

Makkar, F. and K. Chakraborty (2017). Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. International Journal of Food Properties, 20(6): 1326–1337

Mariia, K., M. Arif, Y. Ding, Z. Chi, and C. Liu (2023). Preparation of novel hard capsule using water-soluble polysaccharides and cellulose nanocrystals for drug delivery. Journal of Pharmaceutical Innovation, 18(2): 675–686

Mouedden, R., S. Abdellaoui, F. El Madani, N. El Ouamari, D. Slimani, K. Kasmi, M. Taibi, I. Zahir, and K. Chaabane (2024). Gracilaria gracilis – A review of ecological knowledge, chemical composition, cultivation, and applications. Ecological Engineering & Environmental Technology, 25(1): 276–287

Munandar, A., D. Surilayani, S. Haryati, M. H. Sumantri, R. P. Aditia, and G. Pratama (2019). Characterization flour of two seaweeds (Gracilaria sp. and Kappaphycus alvarezii) for reducing consumption of wheat flour in Indonesia. IOP Conference Series: Earth and Environmental Science, 383(1): 012009

Muthukumar, J. and R. Chidambaram (2023). Isolation and qualification of cellulose from various food-grade macroalgal species. Cellulose Chemistry and Technology, 57(3–4): 237–244

Mwaikambo, L. Y. and M. P. Ansell (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12): 2222–2234

Nafiqoh, N., L. H. Suryaningrum, H. Novita, and S. Andriyanto (2021). Nutrient content of seaweed and its digestibility in Osteochilus hasseltii. IOP Conference Series: Earth and Environmental Science, 695(1): 012015

Nair, S. S., J. Y. Zhu, Y. Deng, and A. J. Ragauskas (2014). Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 16(4): 2349

Nechyporchuk, O., M. N. Belgacem, and J. Bras (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93: 2–25

Nelson, M. L. and R. T. O’Connor (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8(3): 1325–1341

Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of Wood Science, 55(4): 241–249

Prasedya, E. S., F. Fitriani, P. B. A. Saraswati, N. Haqiqi, W. Qariasmadillah, H. Hikmaturrohmi, S. Z. Nurhidayati, and P. E. P. Ariati (2023). Evaluation of bioprospecting potential of epiphytic Gracilaria edulis harvested from seaweed farm in Seriwe Bay, Lombok, Indonesia. Biodiversitas Journal of Biological Diversity, 24(10)

Roslee, A. N. and N. F. Munajat (2017). Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis. IOP Conference Series: Materials Science and Engineering, 257: 012037

Ruangsomboon, S. and J. Pumnuan (2016). Acaricidal activities of algal extracts against the house dust mite, Dermatophagoides pteronyssinus (Trouessart). Journal of the Acarological Society of Japan, 25(Supplement 1): S169–S178

Siddhanta, A. K., M. U. Chhatbar, G. K. Mehta, N. D. Sanandiya, S. Kumar, M. D. Oza, K. Prasad, and R. Meena (2011). The cellulose contents of Indian seaweeds. Journal of Applied Phycology, 23(5): 919–923

Standar Nasional Indonesia (2015). SNI 2690:2015 Dried Seaweed. Pub. L. No. SNI 2690:2015, BSN 1

Syahrul, E., Supriyono, K. Nirmala, and Lideman (2023). Growth and quality performances of seaweed (Kappaphycus alvarezii) with different combinations of temperature and light parameters. IOP Conference Series: Earth and Environmental Science, 1221(1): 012028

Torres, P., P. Novaes, L. G. Ferreira, J. P. Santos, E. Mazepa, M. E. R. Duarte, M. D. Noseda, F. Chow, and D. Y. A. C. dos Santos (2018). Effects of extracts and isolated molecules of two species of Gracilaria (Gracilariales, Rhodophyta) on early growth of lettuce. Algal Research, 32: 142–149

Wahlström, N., U. Edlund, H. Pavia, G. Toth, A. Jaworski, A. J. Pell, F. X. Choong, H. Shirani, K. P. R. Nilsson, and A. Richter-Dahlfors (2020). Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose, 27(7): 3707–3725

Wang, S., X. M. Jiang, Q. Wang, H. S. Ji, L. F. Wu, J. F. Wang, and S. N. Xu (2014). Research of specific heat capacities of three large seaweed biomass. Journal of Thermal Analysis and Calorimetry, 115(3): 2071–2077

Wenno, M. R. and C. R. M. Loppies (2019). Physicochemical characteristics and amino acid profile of fermented sauce made from tuna loin by-product. IOP Conference Series: Earth and Environmental Science, 370(1): 012006

Wu, H., S. K. Shin, S. Jang, C. Yarish, and J. K. Kim (2018). Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions. Algae, 33(4): 329–340

Yuan, S., K. Wu, Z. Duan, Y. Huang, Y. Lu, and X. Ma (2019). A sustainable process for the recovery of volatile constituents from Gracilaria lemaneiformis in agar production and evaluation of their antioxidant activities. BMC Chemistry, 13(1): 74

Yudiati, E., A. Ridlo, A. A. Nugroho, S. Sedjati, and L. Maslukah (2020). Analisis kandungan agar, pigmen dan proksimat rumput laut Gracilaria sp. pada reservoir dan biofilter tambak udang Litopenaeus vannamei. Buletin Oseanografi Marina, 9(2): 133–140 (in Indonesian)

Yulistiana, U., A. A. Damayanti, and N. Cokrowati (2020). Growth of Gracilaria sp. cultivated in ponds in Bajo Baru Dompu. Rekayasa, 13(3): 212–218

Zhang, Z., Z. Fang, Y. Xiang, D. Liu, Z. Xie, D. Qu, M. Sun, H. Tang, and J. Li (2021). Cellulose-based material in lithium-sulfur batteries: A review. Carbohydrate Polymers, 255: 117469

Authors

Nurhayati
Hari Eko Irianto
hari057@brin.go.id (Primary Contact)
Agus Supriyanto
Rinta Kusumawati
Jamal Basmal
Ifah Munifah
Natalia Prodiana Setiawati
Wida Banar Kusumaningrum
Putri Amanda
Ahmad Nandang Roziafanto
Rini Riastuti
Muchamad Chalid
Nurhayati, Irianto, H. E., Supriyanto, A., Kusumawati, R., Basmal, J., Munifah, I., Setiawati, N. P., Kusumaningrum, W. B., Amanda, P., Roziafanto, A. N. ., Riastuti, R. ., & Chalid, M. . (2025). Isolation and Characterization of Cellulose Microfibril (MFC) from Gracilaria sp. with Different Quality Grades. Science and Technology Indonesia, 10(3), 712–724. https://doi.org/10.26554/sti.2025.10.3.712-724

Article Details

Most read articles by the same author(s)