Isolation and Characterization of Cellulose Microfibril (MFC) from Gracilaria sp. with Different Quality Grades
Abstract
The cellulose found in Gracilaria sp. has not been utilized optimally. This study investigated the characteristics of cellulose and cellulose microfibril (MFC) isolated from three grades of Gracilaria sp. Descriptive tests were performed to determine the quality of eachgrade, including observations on moisture content, ashcontent, CAW,andimpurities. The extraction process involved separating agar from Gracilaria sp., isolating cellulose using 10% NaOH, and bleaching cellulose with 3% NaOCl. The bleached cellulose was then ultrasonicated to produce MFC. Characterization was performed using FTIR, XRD, PSA, STA, DSC, and py-GC/MS. FTIR analysis indicated similar peaks for both cellulose forms but only differed in transmittance intensity. The crystallinity index from XRD analysis was 22–39% for raw Gracilaria sp., 25–46% for cellulose, and 68–89% for MFC. The particle size distribution of MFC mostly ranged between 200–500 nm, with 63.16% frequency. TG analysis showed cellulose decomposition with a Tonset of 231–260oC and a Tmax of 318–326oC. DSC analysis revealed that sonication enhances the polymer structure’s crystallization compared to pre-sonicated cellulose and raw material. The py-GC/MS analysis showed that D-allose and n-Hexadecanoic acid were the major components.
References
Al-Asgah, N. A., E.-S. M. Younis, A.-W. A. Abdel-Warith, and F. S. Shamlol (2016). Evaluation of Red Seaweed Gracilaria arcuata as Dietary Ingredient in African Catfish, Clarias gariepinus. Saudi Journal of Biological Sciences, 23(2): 205–210
Al Wazzan, I. M., P. Wullandari, and A. Fauzi (2021). Effect of Dried Eucheuma cottonii Stored in Seaweed Storage Device in Its Quality. Jurnal Perikanan Universitas Gadjah Mada, 23(2): 137
AOAC International (2005). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, 18th edition
Badan Standardisasi Nasional (2015). SNI 8168:2015 Clean Anhydrous Weed (CAW) in Dried Seaweed. Badan Standardisasi Nasional
Baghel, R. S., C. R. K. Reddy, and R. P. Singh (2021). Seaweed-Based Cellulose: Applications, and Future Perspectives. Carbohydrate Polymers, 267: 118241
Bhutiya, P. L., N. Misra, R. M. Abdul, and H. S. Zaheer (2018). Nested Seaweed Cellulose Fiber Deposited with Cuprous Oxide Nanorods for Antimicrobial Activity. International Journal of Biological Macromolecules, 117: 435–444
Carrillo, F., X. Colom, J. J. Suñol, and J. Saurina (2004). Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres. European Polymer Journal, 40(9): 2229–2234
Chanchpara, A., T. P. Sahoo, A. K. Madhava, and H. T. Saravaia (2023). Non-Isothermal Kinetic Decomposition Characteristic of Gracilaria corticata Biomass and Its Biochar Utilization for Efficient Heavy Metals Remediation. BioEnergy Research, 17(2): 1055–1064
Chen, Y. W., H. V. Lee, J. C. Juan, and S.-M. Phang (2016). Production of New Cellulose Nanomaterial from Red Algae Marine Biomass Gelidium elegans. Carbohydrate Polymers, 151: 1210–1219
Chirayil, C. J., J. Joy, L. Mathew, M. Mozetic, J. Koetz, and S. Thomas (2014). Isolation and Characterization of Cellulose Nanofibrils from Helicteres isora Plant. Industrial Crops and Products, 59: 27–34
Ciancia, M., M. C. Matulewicz, and R. Tuvikene (2020). Structural Diversity in Galactans from Red Seaweeds and Its Influence on Rheological Properties. Frontiers in Plant Science, 11: 559986
Costa, D. S., T. S. L. Araújo, N. A. Sousa, L. K. M. Souza, D. M. Pacífico, F. B. M. Sousa, L. A. D. Nicolau, L. S. Chaves, F. C. N. Barros, A. L. P. Freitas, and J. V. R. Medeiros (2016). Sulphated polysaccharide isolated from the seaweed Gracilaria caudata exerts an antidiarrhoeal effect in rodents. Basic & Clinical Pharmacology & Toxicology, 118(6): 440–448
Da Costa, E., T. Melo, A. Moreira, C. Bernardo, L. Helguero, I. Ferreira, M. Cruz, A. Rego, P. Domingues, R. Calado, M. Abreu, and M. Domingues (2017). Valorization of lipids from Gracilaria sp. through lipidomics and decoding of antiproliferative and anti-inflammatory activity. Marine Drugs, 15(3): 62
Debbarma, J., R. B. Madhusudana, L. N. Murthy, S. Mathew, G. Venkateshwarlu, and C. N. Ravishankar (2016). Nutritional profiling of the edible seaweeds Gracilaria edulis, Ulva lactuca and Sargassum sp. Indian Journal of Fisheries, 63(3): 81–87
Dilamian, M. and B. Noroozi (2019). A combined homogenization-high intensity ultrasonication process for individualization of cellulose micro-nano fibers from rice straw. Cellulose, 26(10): 5831–5849
Doh, H., K. D. Dunno, and W. S. Whiteside (2020). Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films. Food Bioscience, 38: 100795
Filipova, I., V. Fridrihsone, U. Cabulis, and A. Berzins (2018). Synthesis of nanofibrillated cellulose by combined ammonium persulphate treatment with ultrasound and mechanical processing. Nanomaterials, 8(9): 640
Govindarajan, M. and G. Benelli (2017). A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. Journal of Cluster Science, 28(1): 15–36
Idris, N., E. Johannes, and Z. Dwyana (2022). Potential of hexadecanoic acid as antimicrobials in bacteria and fungi that cause decay in mustard greens Brassica juncea L. International Journal of Applied Biology, 6(2): 36–42
Insani, A. N., H. Hafiludin, and A. B. Chandra (2022). Utilization of Gracilaria sp. from Pamekasan waters as antioxidant. Juvenil: Jurnal Ilmiah Kelautan dan Perikanan, 3(1): 16–25
Jmel, M. A., N. Anders, G. Ben Messaoud, M. N. Marzouki, A. Spiess, and I. Smaali (2019). The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. Journal of Cleaner Production, 234: 1421–1427
Kallappa, P. J., P. G. Kalleshappa, B. B. Eshwarappa, S. Basavarajappa, V. S. Betageri, and B. K. Devendra (2023). Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies. International Nano Letters, 13(3–4): 261–272
Katili, R. A., F. A. Dali, and N. Yusuf (2019). Quality of dried seaweed Kappaphycus alvarezii with traditional drying methods from North Gorontalo. IOP Conference Series: Earth and Environmental Science, 278(1): 012039
Kaur, P., R. Agrawal, F. M. Pfeffer, R. Williams, and H. B. Bohidar (2023). Hydrogels in agriculture: Prospects and challenges. Journal of Polymers and the Environment, 31(9): 3701–3718
Kumar, P. S., M. Edwin, and A. J. Percy (2024). Comparative study on pyrolysis characteristics and kinetics of Indian almond fruit and Gracilaria changii seaweed by thermogravimetric analysis. Biomass Conversion and Biorefinery, 14(14): 15837–15852
Lin, Y.-C., S.-T. Yeh, C.-C. Li, L.-L. Chen, A.-C. Cheng, and J.-C. Chen (2011). An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. Fish & Shellfish Immunology, 31(6): 1239–1246
Lubis, R., Riyanto, B. Wirjosentono, Eddyanto, and A. Septevani (2019). Extraction and characterization of cellulose fiber of durian rinds from North Sumatera as the raw material for textile fiber. Journal of Physics: Conference Series, 1232(1): 012017
Makkar, F. and K. Chakraborty (2017). Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. International Journal of Food Properties, 20(6): 1326–1337
Mariia, K., M. Arif, Y. Ding, Z. Chi, and C. Liu (2023). Preparation of novel hard capsule using water-soluble polysaccharides and cellulose nanocrystals for drug delivery. Journal of Pharmaceutical Innovation, 18(2): 675–686
Mouedden, R., S. Abdellaoui, F. El Madani, N. El Ouamari, D. Slimani, K. Kasmi, M. Taibi, I. Zahir, and K. Chaabane (2024). Gracilaria gracilis – A review of ecological knowledge, chemical composition, cultivation, and applications. Ecological Engineering & Environmental Technology, 25(1): 276–287
Munandar, A., D. Surilayani, S. Haryati, M. H. Sumantri, R. P. Aditia, and G. Pratama (2019). Characterization flour of two seaweeds (Gracilaria sp. and Kappaphycus alvarezii) for reducing consumption of wheat flour in Indonesia. IOP Conference Series: Earth and Environmental Science, 383(1): 012009
Muthukumar, J. and R. Chidambaram (2023). Isolation and qualification of cellulose from various food-grade macroalgal species. Cellulose Chemistry and Technology, 57(3–4): 237–244
Mwaikambo, L. Y. and M. P. Ansell (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12): 2222–2234
Nafiqoh, N., L. H. Suryaningrum, H. Novita, and S. Andriyanto (2021). Nutrient content of seaweed and its digestibility in Osteochilus hasseltii. IOP Conference Series: Earth and Environmental Science, 695(1): 012015
Nair, S. S., J. Y. Zhu, Y. Deng, and A. J. Ragauskas (2014). Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 16(4): 2349
Nechyporchuk, O., M. N. Belgacem, and J. Bras (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93: 2–25
Nelson, M. L. and R. T. O’Connor (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8(3): 1325–1341
Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of Wood Science, 55(4): 241–249
Prasedya, E. S., F. Fitriani, P. B. A. Saraswati, N. Haqiqi, W. Qariasmadillah, H. Hikmaturrohmi, S. Z. Nurhidayati, and P. E. P. Ariati (2023). Evaluation of bioprospecting potential of epiphytic Gracilaria edulis harvested from seaweed farm in Seriwe Bay, Lombok, Indonesia. Biodiversitas Journal of Biological Diversity, 24(10)
Roslee, A. N. and N. F. Munajat (2017). Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis. IOP Conference Series: Materials Science and Engineering, 257: 012037
Ruangsomboon, S. and J. Pumnuan (2016). Acaricidal activities of algal extracts against the house dust mite, Dermatophagoides pteronyssinus (Trouessart). Journal of the Acarological Society of Japan, 25(Supplement 1): S169–S178
Siddhanta, A. K., M. U. Chhatbar, G. K. Mehta, N. D. Sanandiya, S. Kumar, M. D. Oza, K. Prasad, and R. Meena (2011). The cellulose contents of Indian seaweeds. Journal of Applied Phycology, 23(5): 919–923
Standar Nasional Indonesia (2015). SNI 2690:2015 Dried Seaweed. Pub. L. No. SNI 2690:2015, BSN 1
Syahrul, E., Supriyono, K. Nirmala, and Lideman (2023). Growth and quality performances of seaweed (Kappaphycus alvarezii) with different combinations of temperature and light parameters. IOP Conference Series: Earth and Environmental Science, 1221(1): 012028
Torres, P., P. Novaes, L. G. Ferreira, J. P. Santos, E. Mazepa, M. E. R. Duarte, M. D. Noseda, F. Chow, and D. Y. A. C. dos Santos (2018). Effects of extracts and isolated molecules of two species of Gracilaria (Gracilariales, Rhodophyta) on early growth of lettuce. Algal Research, 32: 142–149
Wahlström, N., U. Edlund, H. Pavia, G. Toth, A. Jaworski, A. J. Pell, F. X. Choong, H. Shirani, K. P. R. Nilsson, and A. Richter-Dahlfors (2020). Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose, 27(7): 3707–3725
Wang, S., X. M. Jiang, Q. Wang, H. S. Ji, L. F. Wu, J. F. Wang, and S. N. Xu (2014). Research of specific heat capacities of three large seaweed biomass. Journal of Thermal Analysis and Calorimetry, 115(3): 2071–2077
Wenno, M. R. and C. R. M. Loppies (2019). Physicochemical characteristics and amino acid profile of fermented sauce made from tuna loin by-product. IOP Conference Series: Earth and Environmental Science, 370(1): 012006
Wu, H., S. K. Shin, S. Jang, C. Yarish, and J. K. Kim (2018). Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions. Algae, 33(4): 329–340
Yuan, S., K. Wu, Z. Duan, Y. Huang, Y. Lu, and X. Ma (2019). A sustainable process for the recovery of volatile constituents from Gracilaria lemaneiformis in agar production and evaluation of their antioxidant activities. BMC Chemistry, 13(1): 74
Yudiati, E., A. Ridlo, A. A. Nugroho, S. Sedjati, and L. Maslukah (2020). Analisis kandungan agar, pigmen dan proksimat rumput laut Gracilaria sp. pada reservoir dan biofilter tambak udang Litopenaeus vannamei. Buletin Oseanografi Marina, 9(2): 133–140 (in Indonesian)
Yulistiana, U., A. A. Damayanti, and N. Cokrowati (2020). Growth of Gracilaria sp. cultivated in ponds in Bajo Baru Dompu. Rekayasa, 13(3): 212–218
Zhang, Z., Z. Fang, Y. Xiang, D. Liu, Z. Xie, D. Qu, M. Sun, H. Tang, and J. Li (2021). Cellulose-based material in lithium-sulfur batteries: A review. Carbohydrate Polymers, 255: 117469
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.