Core Shell Regulations in Co-Precipitation to Regulate Structure and Performance of Single-Crystal NCM622

Donny Marihot Siburian, Cheng Yi, Liu Hai, Zhen Jiang He, Hua Wenchao, Xu Kaihua

Abstract

The development of single-crystal NCM622 cathodes remains a key focus in lithium-ion battery research due to their stable structure and cycling performance. This study explores the impact of controlled gas environments on particle nucleation and growth, particularly under different nitrogen-to-air (N₂:air) ratios. The optimized condition, Hydroxide precursor (HP)-2.5 and Single crystal cathode (SC)-2.5 (N₂:air = 2.4:0.2 during nucleation up to 2.5 μm, followed by N₂:air = 2.4:0 for growth up to 5 μm), facilitates the formation of well-structured particles with a core-shell morphology. This structure enhances sintering efficiency, leading to the successful formation of single-crystal NCM622. Electrochemical evaluations reveal that SC-2.5 exhibits excellent cycling stability, with an initial discharge capacity of 168.48 mAh/g and a retention of 134.81 mAh/g after 100 cycles. The capacity retention of 86.32% and Coulombic efficiency of 99.32% indicate minimal degradation and strong electrochemical stability. These findings highlight the importance of controlled synthesis conditions in optimizing lithium-ion battery cathodes for high-performance energy storage applications.

References

Aktekin, B., A. E. Sedykh, K. Müller-Buschbaum, A. Henss, and J. Janek (2024). The Formation of Residual Lithium Compounds on Ni-Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide-Based ASSBs. Advanced Functional Materials, 34(21); 2313252.

Almafie, M. R., R. Dani, Riyanto, L. Marlina, J. Jauhari, and I. Sriyanti (2024). Preparation of PAN/PVDF Nanofiber Mats Loaded with Coconut Shell Activated Carbon and Silicon Dioxide for Lithium-Ion Battery Anodes. Science and Technology Indonesia, 9(2); 427–447.

Bouguern, M. D., A. K. M R, and K. Zaghib (2024). The Critical Role of Interfaces in Advanced Li-Ion Battery Technology: A Comprehensive Review. Journal of Power Sources, 623; 235457.

Chen, Y., Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li (2021). A Review of Li-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. Journal of Energy Chemistry, 59; 83–99.

Chu, R., Y. Zou, P. Zhu, S. Tan, F. Qiu, W. Fu, F. Niu, and W. Huang (2022). Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research. Energies, 15(23); 9235.

Ding, H., X. Wang, J. Wang, H. Zhang, G. Liu, W. Yu, X. Dong, and J. Wang (2023). Morphology-Controllable Synthesis and Excellent Electrochemical Performance of Ni-Rich Layered NCM622 as Cathode Materials for Li-Ion Batteries via Glycerin-Assisted Solvothermal Method. Journal of Power Sources, 553; 232307.

Han, Y., Y. Lei, J. Ni, Y. Zhang, Z. Geng, P. Ming, C. Zhang, X. Tian, J. L. Shi, Y. G. Guo, and Q. Xiao (2022). Single-Crystalline Cathodes for Advanced Li-Ion Batteries: Progress and Challenges. Small, 18(43); 2107048.

Hietaniemi, M., T. Hu, J. Välikangas, J. Niittykoski, and U. Lassi (2021). Effect of Precursor Particle Size and Morphology on Lithiation of Ni0.6Mn0.2Co0.2(OH)₂. Journal of Applied Electrochemistry, 51(11); 1545–1557.

Jo, C. H., N. Voronina, and S. T. Myung (2022). Single-Crystalline Particle Ni-Based Cathode Materials for Lithium-Ion Batteries: Strategies, Status, and Challenges to Improve Energy Density and Cyclability. Energy Storage Materials, 51; 568–587.

Kim, A. Y., F. Strauss, T. Bartsch, J. H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, and T. Brezesinski (2019a). Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chemistry of Materials, 31(23); 9664–9672.

Kim, J. H., K. J. Park, S. J. Kim, C. S. Yoon, and Y. K. Sun (2019b). A Method of Increasing the Energy Density of Layered Ni-Rich Cathodes (x = 0.05, 0.1, 0.2). Journal of Materials Chemistry A, 7(6); 2694–2701.

Li, H., L. Wang, Y. Song, Z. Zhang, A. Du, Y. Tang, J. Wang, and X. He (2024). Why the Synthesis Affects Performance of Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries. Advanced Materials, 36(16); 2312292.

Lu, Y., Y. Mo, Y. Chen, and F. Yu (2021). Effects of Various Elements Doping on LiNi0.6Co0.2Mn0.2O2 Layered Materials for Lithium-Ion Batteries. Energy Technology, 9(7); 2100074.

Luo, Q., W. Chen, and H. Fang (2022a). A Green and Economical Route to the Precursor for the Synthesis of Single Crystal LiNi0.5Co0.2Mn0.3O2. Ceramics International, 48(12); 16737–16743.

Luo, Y. H., H. X. Wei, L. B. Tang, Y. D. Huang, Z. Y. Wang, Z. J. He, C. Yan, J. Mao, K. Dai, and J. C. Zheng (2022b). Nickel-Rich and Cobalt-Free Layered Oxide Cathode Materials for Lithium Ion Batteries. Energy Storage Materials, 50; 274–307.

Org, W. E., B. He, G. Guo, N. Zhang, J. Wu, J. Zhu, and J. Qiu (2020). Study on the Preparation and Modification of LiNi0.6Co0.2Mn0.2O2 from Spent Lithium Ion Batteries as Lithium and Cobalt Source. International Journal of Electrochemical Science, 15; 6920–6929.

Oswald, S., D. Pritzl, M. Wetjen, Y. Zhang, T. Hao, X. Huang, J. H. Choi, H. Kim, and J.-H. Lim (2022). Elucidating the Implications of Morphology on Fundamental Characteristics of Nickel-Rich NCMs: Cracking, Gassing, Rate Capability, and Thermal Stability of Poly- and Single-Crystalline NCM622. Journal of The Electrochemical Society, 169(5); 050501.

Ou, L., S. Nong, R. Yang, Y. Li, J. Tao, P. Zhang, H. Huang, X. Liang, Z. Lan, H. Liu, D. Huang, J. Guo, and W. Zhou (2022). Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries. Nanomaterials, 12(8); 1324.

Tajik, M., A. Makui, and B. M. Tosarkani (2023). Sustainable Cathode Material Selection in Lithium-Ion Batteries Using a Novel Hybrid Multi-Criteria Decision-Making. Journal of Energy Storage, 66; 107089.

Tian, L., H. Yuan, Q. Shao, S. D. A. Zaidi, C. Wang, and J. Chen (2020). Synergistic Effect of Li2MgTi3O8 Coating Layer with Dual Ionic Surface Doping to Improve Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials. Ionics, 26(10); 4937–4948.

Weitong, Y., L. Ruifeng, C. Yue, S. Lijun, L. Xiaoying, and J. Qi (2023). Preparation of a High Performance LiNi0.6Co0.2Mn0.2O2 Cathode Material by Using Citric Acid as a Complexing Agent. Green Chemistry, 25(3); 1085–1095.

Xia, Y., J. Zheng, C. Wang, and M. Gu (2018). Designing Principle for Ni-Rich Cathode Materials with High Energy Density for Practical Applications. Nano Energy, 49; 434–452.

Xue, L., C. Tian, Y. Liu, X. Wen, T. Huang, and A. Yu (2024). Elucidating the Mechanical-Electrochemical Interactions in Single Crystalline LiNi0.7Co0.1Mn0.2O2 Cathode Material During Solid-State Calcination. Ceramics International, 50(18); 31998–32006.

Zhang, F., S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, W. K. Lee, Y. Yao, J. Deng, T. Liu, Y. Tang, G. Yin, J. Lu, D. Su, and J. Wang (2020). Surface Regulation Enables High Stability of Single-Crystal Lithium-Ion Cathodes at High Voltage. Nature Communications, 11(1); 1–11.

Zhu, B., Y. Ning, Z. Xu, G. Wei, and J. Qu (2024). Comparative Study of Polycrystalline and Single-Crystal NCM811 Cathode Materials: The Role of Crystal Defects in Electrochemical Performance. Journal of Materials Chemistry A, 12(3); 1671–1684.

Zhu, P., V. Trouillet, S. Heißler, and W. Pfleging (2023). Laser Structuring of High Mass Loaded and Aqueous Acid Processed Li(Ni0.6Mn0.2Co0.2)O2 Cathodes for Lithium-Ion Batteries. Journal of Energy Storage, 66; 107401.

Zhu, Y., Y. Zhou, X. Tian, X. Huang, R. Yu, G. Wu, and G. Z. Chen (2019). Inter-Particle Electronic and Ionic Modifications of the Ternary Ni-Co-Mn Oxide for Efficient and Stable Lithium Storage. Journal of The Electrochemical Society, 166(14); A3162–A3167.

Authors

Donny Marihot Siburian
Cheng Yi
yi.cheng@csu.edu.cn (Primary Contact)
Liu Hai
Zhen Jiang He
Hua Wenchao
Xu Kaihua
Siburian, D. M., Cheng Yi, Liu Hai, Zhen Jiang He, Hua Wenchao, & Xu Kaihua. (2025). Core Shell Regulations in Co-Precipitation to Regulate Structure and Performance of Single-Crystal NCM622. Science and Technology Indonesia, 10(3), 895–902. https://doi.org/10.26554/sti.2025.10.3.895-902

Article Details