Synthesis and Characterization of TiO2/CaTiO3 Perovskite Composite Derived from Pinctada maxima Shell Waste
Abstract
This study has succeeded in synthesizing and characterizing TiO2/CaTiO3 perovskite composites using calcium carbonate (CaCO3) from shellfish waste (Pinctada maxima). Synthesis was carried out through the coprecipitation method with variations in the molar ratio of CaCO3:TiO2 and calcination temperatures (700oC, 800oC, and 900oC). Characterization was carried out using FTIR, DTA-TG, XRD, SEM-EDS, BET and UV-Vis. The results of the analysis showed that the calcination temperature affected the powder color, crystal structure, thermal properties and particle size. The DTA-TG analysis shows that increasing the calcination temperature up to 900oC significantly reduces mass loss to 51.88%, with minimal thermal events, indicating the formation of a thermally stable and well-crystallized TiO2/CaTiO3 structure. At a temperature of 900oC, a more perfect CaTiO3 was formed with the whitest powder color, the anatase and brookite phases of TiO2 were still detected, while the calcite phase was still found at a temperature of 700oC. The morphology of the samples showed agglomeration with increasingly uniform particle sizes at higher calcination temperatures. Complementary BET analysis confirms that the composite possesses a mesoporous structure with a specific surface area of 11.42 m2/g and a pore size distribution of 3-5 nm, making it suitable for adsorption and photocatalytic applications. UV-Vis analysis showed an increase in the band gap value along with the increase in the TiO2 ratio. This is also confirmed by the presence of Urbach energy which tends to increase with increasing TiO2 ratio.
References
Altin, I. (2023). Perovskite Type B-CaTiO3 Coupled with Graphene Oxide as Efficient Bifunctional Composites for Environmental Remediation. Processes, 11(11); 11
Attou, L., A. Al-Shami, J. Boujemaâ, O. Mounkachi, and H. Ez-Zahraouy (2022). Predicting the Structural, Optoelectronic, Dynamical Stability and Transport Properties of Boron-Doped CaTiO3: DFT Based Study. Physica Scripta, 97(11); 115808
Beuvier, T., Y. Chushkin, F. Zontone, A. Gibaud, O. Cherkas, J. D. Silva, and I. Snigireva (2022). Self-Transformation of Solid CaCO3 Microspheres into Core-Shell and Hollow Hierarchical Structures Revealed by Coherent X-Ray Diffraction Imaging. IUCrJ, 9(5); 580–593
Bhat, D. K., H. Bantawal, P. I. Uma, S. P. Kumar, and U. S. Shenoy (2024). Designing Sustainable Porous Graphene-CaTiO3 Nanocomposite for Environmental Remediation. Sustainable Chemistry for the Environment, 5; 100071
Cerón-Urbano, L., C. J. Aguilar, J. E. Diosa, and E. Mosquera-Vargas (2023). Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials, 13(22); 22
Cesconeto, F. R., M. Borlaf, M. I. Nieto, A. P. N. de Oliveira, and R. Moreno (2018). Synthesis of CaTiO3 and CaTiO3/TiO2 Nanoparticulate Compounds through Ca2+/TiO2 Colloidal Sols: Structural and Photocatalytic Characterization. Ceramics International, 44(1); 301–309
Chilakala, R., C. Thannaree, E. J. Shin, T. Thenepalli, and J. W. Ahn (2019). Sustainable Solutions for Oyster Shell Waste Recycling in Thailand and the Philippines. Recycling, 4(3); 3
Dassouki, K., S. Dasgupta, E. Dumas, and N. Steunou (2023). Interfacing Metal Organic Frameworks with Polymers or Carbon-Based Materials: From Simple to Hierarchical Porous and Nanostructured Composites. Chemical Science, 14(45); 12898–12925
Diningsih, C. and L. Rohmawati (2022). Synthesis of Calcium Carbonate (CaCO3) from Eggshell by Calcination Method. Indonesian Physical Review, 5(3); 208–215
Ezat, G. S., S. A. Hussen, and S. B. Aziz (2021). Structure and Optical Properties of Nanocomposites Based on Polystyrene (PS) and Calcium Titanate (CaTiO3) Perovskite Nanoparticles. Optik, 241; 166963
Ferrari, A. M., T. O. Germiniano, J. E. Savoia, R. G. Marques, V. A. dos S. Ribeiro, and A. C. Ueda (2019). CaTiO3 Perovskite in the Photocatalysis of Textile Wastewater. Revista Ambiente & Água, 14; e2336
García-Mendoza, M. F., R. Torres-Ricárdez, E. Ramírez-Morales, J. G. Álvarez-Ramirez, L. L. Díaz-Flores, E. del Ángel-Meraz, L. Rojas-Blanco, and G. Pérez-Hernández (2023). CaTiO3 Perovskite Synthetized by Chemical Route at Low Temperatures for Application as a Photocatalyst for the Degradation of Methylene Blue. Journal of Materials Science: Materials in Electronics, 34(10); 873
Giannouli, M. (2021). Current Status of Emerging PV Technologies: A Comparative Study of Dye-Sensitized, Organic, and Perovskite Solar Cells. International Journal of Photoenergy, 2021(1); 6692858
Hamzah, M. S. and B. Nababan (2011). The Effect of Seasons and Depths on Growth and Survival Rate of Pearl Oyster (Pinctada maxima) in Kodek Bay, North Lombok. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 3(2); 2
Han, C., J. Liu, W. Yang, Q. Wu, H. Yang, and X. Xue (2017). Photocatalytic Activity of CaTiO3 Synthesized by Solid State, Sol–Gel and Hydrothermal Methods. Journal of Sol-Gel Science and Technology, 81(3); 806–813
Handayana, I. G. N. Y., D. W. Kurniawidi, S. Rahayu, and N. Rahmawati (2022). Characteristics of Calcium Oxide from Pearl Shells (Pinctada maxima) Based on Calcination Temperature. KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA, 7(1); 1
Jabbarzare, S. (2022). Synthesis and Characterization of Ni-Doped CaTiO3 Nano-Powders and Their Potential for the Removal of Cd from Wastewaters. Journal of Particle Science and Technology, 8(1); 9–16
Jiang, Q., G. Li, X. Wang, H. Kang, Z. Chen, E. Guo, and T. Wang (2024). Enhanced Thermoelectric Properties for Eco-Friendly CaTiO3 by Band Sharpening and Atomic-Scale Defect Phonon Scattering. Materials Today Energy, 44; 101655
Kaabi, F. S. A., M. A. Abdulkareem, and N. A. Muhsin (2023). Determining the Optimal Conditions for the Synthesis Nano CaTiO3 Square Prepared from Natural Dolomite Rocks. Results in Chemistry, 5; 100915
Kandiah, K. K., V. Balakrishnan, A. Syafiq, N. A. Rahim, A. K. Pandey, Y. S. Tan, S. J. Dhoble, R. Kasi, and R. Subramaniam (2023). Study on Photoluminescence of Integrated Nano-Calcium Carbonate (CaCO3) Enhanced with Dysprosium (Dy) Doped Calcium Borophosphate (CBP) Phosphor. Pigment & Resin Technology, 54(1); 87–97
Khezami, L. (2023). Remediation of Heavy Metals from Water Using CaTiO3@g-C3N4 Nanocomposite as Adsorbent: Synthesis, Performance, Kinetic Modeling and Mechanistic Insights. Diamond and Related Materials, 136; 109996
Kurniawidi, D. W., S. Alaa, E. Nurhaliza, D. O. Safitri, S. Rahayu, M. Ali, and M. Amin (2022). Synthesis and Characterization of Nano Chitosan from Vannamei Shrimp Shell (Litopenaeus vannamei). Jurnal Ilmiah Perikanan Dan Kelautan, 14(2); 2
Kurniawidi, D. W., G. Alawiyah, S. Rahayu, Masruroh, R. Wirawan, A. S. Destrianingtyas, N. Septiani, T. Ardianto, and R. R. Illahi (2024). Modification of Chitosan Isolation Method from Pearl Oyster Shell (Pinctada maxima sp) as a Source of Natural Polymer. In Journal of Physics: Conference Series, volume 2866. page 012015
Lalan, V., V. P. M. Pillai, and K. G. Gopchandran (2022). Enhanced Electron Transfer Due to rGO Makes Ag–CaTiO3@rGO a Promising Plasmonic Photocatalyst. Journal of Science: Advanced Materials and Devices, 7(3); 100468
Ledinsky, M., T. Schönfeldová, J. Holovský, E. Aydin, Z. Hájková, L. Landová, N. Neyková, A. Fejfar, and S. D. Wolf (2019). Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. The Journal of Physical Chemistry Letters, 10(6); 1368–1373
Li, J., Y. Wang, X. Yang, H. Kang, Z. Cao, X. Jiang, Z. Chen, E. Guo, and T. Wang (2022). Processing Bulk Insulating CaTiO3 into a High-Performance Thermoelectric Material. Chemical Engineering Journal, 428; 131121
Li, J., H. Wu, R. Zhong, Y. Wang, S. Ye, H. Zhao, K. Yan, Y. Zhu, Z. Hu, W. Xie, and T. Zhang (2024). Quenching-Induced Oxygen Vacancy Engineering Boosts Photocatalytic Activities of CaTiO3. Applied Surface Science, 670; 160619
Liu, G., B. Yang, H. Chen, Y. Zhao, H. Xie, Y. Yuan, Y. Gao, and C. Zhou (2019). In Situ Surface Modification of TiO2 by CaTiO3 to Improve the UV Stability and Power Conversion Efficiency of Perovskite Solar Cells. Applied Physics Letters, 115(21); 213501
Mishra, S., R. Dom, and B. Sundaram (2024a). Effect of Operating Parameters on Photocatalytic Treatment of Synthetic Wastewater Using CaTiO3. Applied Environmental Research, 46(3); 3
Mishra, S., P. K. Naini, and B. Sundaram (2024b). Effect of Calcination Temperature on Structural, Optical and Photocatalytic Properties of Calcium Titanate (CaTiO3) Nanoparticle. Results in Optics, 16; 100676
Novianti, D. R., F. Haikal, U. A. Rouf, A. Hardian, and A. Prasetyo (2022). Synthesis and Characterization of Fe-Doped CaTiO3 Polyhedra Prepared by Molten NaCl Salt. Science and Technology Indonesia, 7(1); 17–21
Saputra, K., M. Masruroh, H. Susanto, and R. Apsari (2024). Tapping into the Power of Sol-Gel Method for Enhanced Antimicrobial Activity of Titania Nanoparticles. Science and Technology Indonesia, 9(3); 546–555
Sen, S., A. Mondal, R. K. Parida, and B. N. Parida (2022). Improved Optical, Dielectric, Impedance, and Magnetic Properties of (BiFeO3) _0.6(CaTiO3) _0.4 for Multifunctional Utilities. Inorganic Chemistry Communications, 142; 109664
Singh, V., A. A. Bhat, A. R. Kadam, S. Saravanakumar, P. K. Tripathi, S. J. Dhoble, and J. B. Joo (2024). Optimal Doping of Ho3+ in CaTiO3 Perovskite for Enhanced Photoluminescence and Sustainable Green Emission. Journal of Electronic Materials, 53(10); 6384–6394
Song, Y., J. Wang, X. Chen, S. Yu, R. Ban, X. Yang, X. Zhang, and Y. Han (2022). Study the Effects of Dry-Wet Cycles and Cadmium Pollution on the Mechanical Properties and Microstructure of Red Clay. Environmental Pollution, 302; 119037
Tanos, F., E. Makhoul, A. A. Nada, M. F. Bekheet, E. Petit, A. Razzouk, G. Lesage, M. Cretin, and M. Bechelany (2024). Efficient Peroxymonosulfate Activation by Metallic Copper in TiO2–CaTiO3–Cu2O–Cu Anodes for Electrocatalytic Degradation of Organic Pollutants. Advanced Energy and Sustainability Research, 5(10); 2400102
Thomas, K., A. Rahman, A. Khandakar, P. Chelvanathan, B. Aissa, and M. I. Hossain (2025). Optimizing Light Management in Bifacial Perovskite Solar Cells Using Silica-Based Anti-Dust and Anti-Reflection Coatings for Harsh Environments. Processes, 13(2); 2
Vasconcelos, S. J. T., M. A. S. Silva, R. G. M. de Oliveira, M. H. B. Junior, H. D. de Andrade, I. S. Q. Junior, C. Singh, and A. S. B. Sombra (2021). High Thermal Stability and Colossal Permittivity of Novel Solid Solution LaFeO3/CaTiO3. Materials Chemistry and Physics, 257; 123239
Wendari, T. P., M. A. Akbar, A. F. Izzati, H. Haidar, A. Rizki, Zulhadjri, S. Arief, N. Mufti, and G. R. Blake (2024). Structure, Dielectric, and Energy Storage Properties of Perovskite CaTiO3 Ceramic Synthesized Using the Natural Calcium from Pensi Shell (Corbicula moltkiana) Waste. Journal of Molecular Structure, 1307; 137949
Widiastuti, W., S. D. B. Bangun, N. L. Y. Giri, and V. Fahmi (2023). Exploring the Community Structure of Plankton in the Maricultures Sites of Kodek Bay, Lombok Island. Buletin Oseanografi Marina, 12(1); 133–141
Yang, L. and B. Kruse (2004). Revised Kubelka–Munk Theory. I. Theory and Application. JOSA A, 21(10); 1933–1941
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.