Functionalization of Titanium Dioxide Nanoparticles in Anatase-Rutile Phases and Quartz Crystal Microbalance for Humidity Sensing Materials
Abstract
A QCM (Quartz Crystal Microbalance) can be developed as a humidity sensor with a selective coating material. TiO2 (titanium dioxide) is a metal oxide with several crystal phases: anatase and rutile phases. However, there are few studies on the crystal phase investigation of a TiO2-based humidity sensor. Thus, this study aimed to develop a humidity sensor by functionalizing TiO2 particles with different crystal phases. The coating materials were prepared by ultrasonication. The synthesis was conducted by mixing 7 mL of TTIP (Titanium (IV) Isopropoxide) precursor in ethanol. This solution was stirred for 30 minutes, ultrasonicated, and heated for 16 hours to make a gel. The next step was a calcination process with two different temperatures to produce different crystal phases: 500oC (anatase) and 700oC (rutile). The synthesized powders were analyzed using XRD-SEM and coated onto the surfaces of the QCMs used as the developed sensors. These sensors were tested inside a chamber using a humidity control kit and a frequency counter (humidity levels: 57% to 92%). The results show that the rutile phase has a smaller particle diameter (252.672 nm) than the anatase phase (384.589 nm). The humidity sensing examinations indicate that the anatase-phase sensor has faster response-recovery times (19 seconds and 8 seconds) than the rutile-phase sensor (28 seconds and 50 seconds). It can be concluded that TiO2 particles in the anatase and rutile phases can be functionalized as a high-sensitivity coating material for a QCM humidity sensor.
References
Chen, Q., Y. Yao, J. Ao, X. Yu, D. Wu, M. Shou, R. Li, and P. Yang (2025). Advances in Quartz Crystal Microbalance Relative Humidity Sensors: A Review. Measurement, 243; 116415
Chernikova, A. G., N. A. Sizykh, I. V. Zabrosaev, and A. M. Markeev (2025). TiN/HZO/TiN Ferroelectric Capacitors With TiO2 Insets: Critical Difference Between Top and Bottom Interface Modification. Surfaces and Interfaces, 62; 106135
Chew, Y. B., C. M. Ling, P.W. Koh, C. S. Chew, and S. L. Lee (2025). Sonochemical Synthesis of Rutile Phase Copper-Doped Titanium Dioxide Coating on Fabric and Its Application in Antibacterial Testing of Staphylococcus aureus. Science and Technology Indonesia, 10(2); 605–613
Dariz, M. A., J. É. Marmentini, G. L. Colpani, M. A. Fiori, A. A. C. Recco, O. C. Alves, M. Z. Fidelis, and R. Brackmann (2025). Exploring the Unique Physicochemical Properties of Fe3O4@TiO2-Nd Magnetic Nanocomposites Synthesized via Hydrothermal Coprecipitation. Journal of Magnetism and Magnetic Materials, 614; 172752
Deng, Y., Y. Shi, Q. Zeng, C. Xu, L. Fu, and B. Lin (2025). Facile Preparation of Inexpensive Polysaccharides-Based Antibacterial Sensor for All-Round Monitoring of Humidity and Temperature in Grain Storage. Chemical Engineering Journal, 507; 160514
Ding, X., Q. Yu, H. Xue, W. Zhang, H. Ren, and J. Geng (2025). Photochemical Behavior of Extracellular Polymeric Substances in Intimately Coupled TiO2 Photocatalysis and Biodegradation System. Bioresource Technology, 416; 131752
Dou, Y., C. Li,W. Luo, L. Qian, L.Wang, D. Li, H. Li, and M. Li (2025). Surface Acoustic Wave Relative Humidity Sensor Based on GO/TiO2 Sensitive Film. Sensors and Actuators A: Physical, 365; 114906
El Koulali, F., M. Ouzzine, L. Cano-Casanova, M. C. Román-Martínez, and M. A. Lillo-Ródenas (2025). Use of the HighScore Plus Software for an Easy and Complete Quantification of the Anatase, Brookite, Rutile, and Amorphous Phase Content in TiO2. Chemistry of Inorganic Materials, 5; 100086
Farou, M., A. Djellad, S. Chiheb, H. Lalaymia, B. Rekik, and P. O. Logerais (2025). Quantification of the Impact of Irradiance, Heat, Humidity, and Cyclic Temperature on the Aging of Photovoltaic Panels: A Case Study in Algeria. Energy Reports, 13; 642–652
Franzelli, B., J. Bonnety, J. Yi, Y. Ogata, A. Cuoci, and C. Betrancourt (2024). Numerical Simulations of TiO2 Production in a Laminar Coflow H2/Ar/TTIP Diffusion Flame: ComparisonWith Experiments and Parametric Sensitivity Study. Proceedings of the Combustion Institute, 40; 105599
Gulsaran, A., B. Azer, R. Saritas, S. Kocer, Y. S. Shama, S. Rahmanian, H.Mouharrar, R. Abdelrahman, E. Abdel-Rahman, and M. Yavuz (2024). High Sensitivity, Thermal Noise-Driven Aluminum-Based Resonant MEMS Humidity Sensor. Sensors and Actuators A: Physical, 378; 115844
Guo, Z., Y. Chen, N. Wang, Y. Xu, Q. Zhao, Z. Hou, G. Gao, Y. Kang, and H. Zhan (2025). Ultrasonic-Assisted MoS2/GO/TiO2 Ceramic Coatings: Enhancing Anti-Friction Performance Through Dual-Interface Optimization. Ultrasonics Sonochemistry, 112; 107180
Hossain, S. and S. Ahmed (2023). Easy and Green Synthesis of TiO2 (Anatase and Rutile): Estimation of Crystallite Size Using Scherrer Equation, Williamson-Hall Plot, Monshi-Scherrer Model, Size-Strain Plot, Halder-Wagner Model. Results in Materials, 20; 100492
Irawan, D., Azhar, K. Ramadhan, A. Marwin, and A. Marwan (2024). Numerical Study of Early Detection of Tuberculosis Infected With High Sensitivity Plasmonic Sensor. Science and Technology Indonesia, 9(1); 94–102
Lirong, Y., L. Xiaoyu, W. Chunmei, L. Zhigang, and F. Xiaoxin (2022). Influence of Calcination Temperatures on the Anatase and Rutile Mixed Phase Composition and Photocatalytic Activity of the Carbon Doped Mesoporous TiO2. Optical Materials, 133; 112997
Liu, R., Z. Wu, Q. Li, S. Shamim, and L. Ba (2025). Fully Printed Field-Effect Transistor Humidity SensorWith Chitosan/Polyvinyl Alcohol/Nano Carbon Powder for Enhanced Moisture Sensitivity. Talanta, 287; 127679
Mardiana, L., A. Y. P.Wardoyo, Masruroh, and H. A. Dharmawan (2022). Synthesis TiO2 Using SonochemicalMethod and Responses the CO2 Gas of the Nanoparticle TiO2 Layers on the QCM Sensor Surfaces. Journal of Physics: Conference Series, 2165; 012014
Mardiana, L., A. Y. P.Wardoyo, Masruroh, and H. A. Dharmawan (2024). The Effect of Humidity Levels on Carbon Dioxide Gas Concentration Measurement Using a Titanium Dioxide-Coated Quartz Crystal Microbalance. Evergreen, 11(1); 137–142
Mohammed-Amine, E., B. Kaltoum, E. M. El Mountassir, A. T. Abdelaziz, R. Stephanie, L. Stephanie, P. Anne, W. W. C. Pascal, M. M. Alrashed, and R. Salah (2025). Novel Sol-Gel Synthesis of TiO2/BiPO4 Composite for Enhanced Photocatalytic Degradation of Carbamazepine Under UV and Visible Light: Kinetic, Identification of Photoproducts and Mechanistic Insights. Journal of Water Process Engineering, 70; 107098
Procek, M., A. Stolarczyk, T. Pustelny, and E. Maciak (2015). A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air. Sensors, 15(4); 9563–9581
Qadri, L. A., G. A. Abelta, M. Febrina, A. Rajak, S. Maulana, M. A. Asagabaldan, and T. Taher (2024). Effect of Calcination Temperature on the Adsorption Performance of Tanggamus Natural Zeolite for Ammonium Removal From Shrimp PondWastewater. Science and Technology Indonesia, 9(1); 198–206
Qi, Y., J. Li, Y. Chen, B. Zhu, X. Zhou, X. Xiao, Z. Gu, J. Qian, C.He, M. Lai, Y. Ma, and B. Liu (2025). Differential Fiber Optic Humidity Sensor Based on Superhydrophilic SiO2 /Polyethylene Glycol Composite Film With Linear Response. Optical Fiber Technology, 90; 104150
Qian, Y., J. Zou, X. Jiang, J. Wang, J. Zhou, C. Cheng, X. Zhang, W. He, Q. Jin, and J. Jian (2025). Improving CO2 Resistance in High-Temperature Humidity Sensors Using LaFeO3 Sensing Electrodes. Sensors and Actuators B: Chemical, 431; 137423
Septriansyah, V., S. Saloma, S. A. Nurjannah, A. Saggaff, A. P. Usman, and S. P. Ngian (2025). Effect of the Nano-Silica Addition on theMechanical Properties of Polymer Concrete. Science and Technology Indonesia, 10(1); 9–17
Sepúlveda, M., H. Sopha, V. Cicmancova, L. Hromadko, and J. M. Macak (2025). TiO2 Nanotubes Grown on Ti and Ti6Al4V Alloy Spheres by Bipolar Anodization. Electrochemistry Communications, 170; 107855
Sun, S., C. Zhao, Z. Zhang, D. Wang, X. Yin, J. Han, J. Wei, Y. Zhao, and Y. Zhu (2025). Highly Selective QCM Sensor Based on Functionalized Hierarchical Hollow TiO2 Nanospheres for Detecting PPB-Level 3-Hydroxy-2-Butanone Biomarker at Room Temperature. Chinese Chemical Letters, 36; 109939
Taha, S., S. Begum, V. N. Narwade, D. I. Halge, J.W. Dadge, M. P. Mahabole, R. S. Khairnar, and K. A. Bogle (2020). Development of Alcohol Sensor Using TiO2 -Hydroxyapatite Nano-Composites. Materials Chemistry and Physics, 240; 122228
Tang, K., X. Ding, X. Yu, J. Lu, F. Liu, H. Li, and X. Chen (2025). High Fundamental Frequency QCM Humidity Sensor Based on C60-OH/ Ti3C2TX NanocompositeWith Superior Response. Sensors and Actuators B: Chemical, 426; 137014
Triyana, K., A. Sembiring, A. Rianjanu, S. N. Hidayat, R. Riowirawan, T. Julian, A. Kusumaatmaja, I. Santoso, and R. Roto (2018). Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing. Electronics, 7(9); 1–11
Wang, L., J. Song, and C. Yu (2025). Recent Progress on Mass-Sensitive Gas Sensors for Environmental and Industrial Applications. Measurement, 249; 117039
Wijekoon, S. H. D. P., M. Shimomura, T. Kawaguchi, N. Shimosako, N. Sakamoto, and N.Wakiya (2025). Smooth TiO2 Thin Film Fabrication by On-Site Controlled Hydrolysis of Alcohol-Titanium Alkoxide Mixtures. Surfaces and Interfaces, 58; 105755
Zhang, H., X. Xu, J. Lu, M. Huang, Y. Wang, Z. Feng, and Y.Wang (2025a). Flexible Non-Contact Printed Humidity Sensor: Realization of the Ultra-High Performance Humidity Monitoring Based on the MXene Composite Material. Sensors and Actuators B: Chemical, 432; 137481
Zhang, Y., D. Zhang, H. Zhang, Y.Wu,W. Liu, Z.Wang, and G. Xi (2025b). Nanoflower-Like Titanium DioxideModified Ethyl Cellulose-Based QCM Humidity SensorWith Low-Hysteresis forWearable RespiratoryMonitoring. Sensors and Actuators B: Chemical, 443; 138286
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.