Amine-Functionalized Mesoporous Silica SBA-15 for Enhanced Solubility and Release Rate of Gliclazide
Abstract
Gliclazide (GLI), a sulfonylurea-class antidiabetic drug, exhibits poor aqueous solubility, limiting its bioavailability. This study aimed to enhance gliclazide’s solubility and dissolution rate by adsorbing it into mesoporous silica SBA-15 and amine-functionalized SBA-15 (SBA-15-A). SBA-15 was synthesized using Pluronic® P123 as a template and tetraethyl orthosilicate (TEOS) as the silica precursor, while 3-aminopropyltriethoxysilane (APTES) was used to introduce amine functional groups. Gliclazide was loaded into SBA-15 and SBA-15-A at a 1:3 mass ratio. The materials (GLI, SBA-15, SBA-15-A, GLI-SBA, and GLI-SBA-A) were characterized using nitrogen adsorption-desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD). Characterization revealed that the pore diameters of SBA-15 and SBA-15-A were 6.079 nm and 5.483 nm, respectively. FT-IR confirmed the interaction between gliclazide and the mesoporous carriers. SEM and TEM analysis showed crystalline gliclazide and rod-shaped morphologies for the mesopores samples. DSC and PXRD results indicated that most of the gliclazide had been converted to an amorphous form. Solubility testing over 24 hours showed that GLI-SBA and GLI-SBA-A improved gliclazide solubility by 1.375- and 2.334-fold, respectively, compared to pure gliclazide. Dissolution testing in distilled water revealed a 6.033-fold and 3.887-fold increase in the release rate at 5 minutes for GLI-SBA and GLI-SBA-A, respectively. Both solubility and release rate improvements were statistically significant (p <0.05). These findings suggest that amine functionalization of SBA-15 effectively enhances the solubility and dissolution rate of gliclazide.
References
Albayati, T. M., I. K. Salih, and H. F. Alazzawi (2019). Synthesis and Characterization of a Modified Surface of SBA-15 Mesoporous Silica for a Chloramphenicol Drug Delivery System. Heliyon, 5(10); e02539
Banday, M. Z., A. S. Sameer, and S. Nissar (2020). Pathophysiology of Diabetes: An Overview. Avicenna Journal of Medicine, 10(04); 174–188
Bindal, R., D. K. Sharma, and S. K. Chaturvedi (2024). Development and Characterization of Gliclazide Solid Dispersion Using Mixed Solvency Concept. International Journal of Newgen Research in Pharmacy & Healthcare; 116–124
Budiman, A., G. Anastasya, A. L. Handini, I. N. Lestari, L. Subra, and D. L. Aulifa (2024). Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward In Vitro and In Vivo Studies. International Journal of Nanomedicine, 19; 2199–2225
Dadej, A., A. Woźniak-Braszak, P. Bilski, H. Piotrowska-Kempisty, M. Józkowiak, M. Geszke-Moritz, M. Moritz, D. Dadej, and A. Jelińska (2021). Modification of the Release of Poorly Soluble Sulindac with the APTES-Modified SBA-15 Mesoporous Silica. Pharmaceutics, 13(10); 1693
Domingo-Lopez, D. A., G. Lattanzi, L. H. J. Schreiber, E. J. Wallace, R. Wylie, J. O’Sullivan, E. B. Dolan, and G. P. Duffy (2022). Medical Devices, Smart Drug Delivery, Wearables and Technology for the Treatment of Diabetes Mellitus. Advanced Drug Delivery Reviews, 185; 114280
Estevão, B. M., I. Miletto, N. Hioka, L. Marchese, and E. Gianotti (2021). Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications. ChemistryOpen, 10(12); 1251–1259
Fitriani, L., H. Azizah, U. Hasanah, and E. Zaini (2023). Enhancement of Curcumin Solubility and Dissolution by Adsorption in Mesoporous SBA-15. International Journal of Applied Pharmaceutics, 15(Special Issue 1); 61–67
Fitriani, L., C. M. Azzahra, A. Jessica, U. Hasanah, and E. Zaini (2024). Improvement of Solubility Usnic Acid Loaded on Mesoporous Silica SBA-15 and Physicochemical Characterization. Science and Technology Indonesia, 9(2); 251–259
Hasanah, U., F. Rizky, M. C. I. M. Amin, and E. Zaini (2025). Ticagrelor Solubility and Dissolution Rate Enhancement Using Mesoporous Silica SBA-15. Science and Technology Indonesia, 10(2); 598–604
Hasanah, U., S. Wikarsa, and S. Asyarie (2021). Various Chloride Salt Addition in Mesoporous Material (SBA-15) Synthesis and Potential as Carrier for Dissolution Enhancer. In Proceedings of the 6th International Conference on Health Sciences Research. pages 343–349
He, Y., S. Liang, M. Long, and H. Xu (2017). Mesoporous Silica Nanoparticles as Potential Carriers for Enhanced Drug Solubility of Paclitaxel. Materials Science and Engineering: C, 78; 12–17
Izquierdo-Barba, I., E. Sousa, J. C. Doadrio, A. L. Doadrio, J. P. Pariente, A. Martínez, F. Babonneau, and M. Vallet-Regí (2009). Influence of Mesoporous Structure Type on the Controlled Delivery of Drugs: Release of Ibuprofen from MCM-48, SBA-15 and Functionalized SBA-15. Journal of Sol-Gel Science and Technology, 50(3); 421–429
Knapik-Kowalczuk, J., D. Kramarczyk, K. Chmiel, J. Romanova, K. Kawakami, and M. Paluch (2020). Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticals—The Case of Simvastatin. Pharmaceutics, 12(4); 384
Letchmanan, K., S. C. Shen, W. K. Ng, and R. B. H. Tan (2017). Dissolution and Physicochemical Stability Enhancement of Artemisinin and Mefloquine Co-Formulation via Nano-Confinement with Mesoporous SBA-15. Colloids and Surfaces B: Biointerfaces, 155; 560–568
Liou, T. H., G. W. Chen, and S. Yang (2022). Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials, 12(5); 791
Maggi, L., A. Canobbio, G. Bruni, G. Musitelli, and U. Conte (2015). Improvement of the Dissolution Behavior of Gliclazide, a Slightly Soluble Drug, Using Solid Dispersions. Journal of Drug Delivery Science and Technology, 26; 17–23
Maleki, A. and M. Hamidi (2016). Dissolution Enhancement of a Model Poorly Water-Soluble Drug, Atorvastatin, with Ordered Mesoporous Silica: Comparison of MSF with SBA-15 as Drug Carriers. Expert Opinion on Drug Delivery, 13(2); 171–181
Munguía-Cortés, L., I. Pérez-Hermosillo, R. Ojeda-López, J. M. Esparza-Schulz, C. Felipe-Mendoza, A. Cervantes-Uribe, and A. Domínguez-Ortiz (2017). APTES Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide. Journal of the Mexican Chemical Society, 61(4); 273–281
Pevná, V., L. Zauška, A. Benziane, G. Vámosi, V. Girman, M. Miklóšová, V. Zeleňák, V. Huntošová, and M. Almáši (2023). Effective Transport of Aggregated Hypericin Encapsulated in SBA-15 Nanoporous Silica Particles for Photodynamic Therapy of Cancer Cells. Journal of Photochemistry and Photobiology B: Biology, 247; 112785
Rajamma, A. J., S. B. Sateesha, M. K. Narode, V. R. S. S. Prashanth, and A. M. Karthik (2015). Preparation and Crystallographic Analysis of Gliclazide Polymorphs. Indian Journal of Pharmaceutical Sciences, 77(1); 34
Sahin, I., O. Bakiner, T. Demir, R. Sari, and A. Atmaca (2024). Current Position of Gliclazide and Sulfonylureas in the Contemporary Treatment Paradigm for Type 2 Diabetes: A Scoping Review. Diabetes Therapy, 15(8); 1687–1716
Simos, Y. V., K. Spyrou, M. Patila, N. Karouta, H. Stamatis, D. Gournis, E. Dounousi, and D. Peschos (2021). Trends of Nanotechnology in Type 2 Diabetes Mellitus Treatment. Asian Journal of Pharmaceutical Sciences, 16(1); 62–76
Wang, M. and B. Duan (2019). Materials and Their Biomedical Applications. In Encyclopedia of Biomedical Engineering, volume 1–3. pages 135–152
Wawrzyńczak, A., I. Nowak, and A. Feliczak-Guzik (2023). SBA-15- and SBA-16-Functionalized Silicas as New Carriers of Niacinamide. International Journal of Molecular Sciences, 24(24); 17567
Weeda, E. R., C. I. Coleman, C. A. McHorney, C. Crivera, J. R. Schein, and D. M. Sobieraj (2016). Impact of Once- or Twice-Daily Dosing Frequency on Adherence to Chronic Cardiovascular Disease Medications: A Meta-Regression Analysis. International Journal of Cardiology, 216; 104–109
Yaghobi, N., L. Hajiaghababaei, A. Badiei, M. R. Ganjali, and G. M. Ziarani (2019). Controlled Release of Amoxicillin from Bis(2-Hydroxyethyl)Amine Functionalized SBA-15 as a Mesoporous Sieve Carrier. Journal of Chemical Health Risks, 9(3); 253
Zhang, W., H. Liu, X. Qiu, F. Zuo, and B. Wang (2024). Mesoporous Silica Nanoparticles as a Drug Delivery Mechanism. Open Life Sciences, 19(1); 20220867
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.