Optimization and Stability Assessment of Chitosan/PVA Smart Sensor Films Incorporated with Roselle Anthocyanins for Real-Time Visual Monitoring of Chicken and Shrimp Freshness under Different Storage Conditions
Abstract
The development of intelligent packaging systems has become a promising approach to ensure food safety and quality by enabling real-time freshness monitoring. In this study, chitosan/polyvinyl alcohol (Cs/PVA)-based smart sensor films incorporated with roselle (Hibiscus sabdariffa L.) anthocyanins were fabricated and optimized for the visual detection of chicken and shrimp spoilage under variations storage. Anthocyanins were extracted from fresh roselle petals through different maceration periods (R1–R5) to investigate their influence on film properties. Physicochemical characterization revealed that extended maceration enhanced anthocyanin loading, leading to increased film thickness, higher color saturation, and improved optical responsiveness. FESEM micrographs demonstrated homogeneous polymer matrices at lower anthocyanin concentrations, while higher loadings induced micro-aggregates that enhanced volatile adsorption and sensing sensitivity. The fabricated films exhibited clear and progressive color transitions aligned with the spoilage process: red–purple at fresh conditions (pH 5–6), brown–green at intermediate spoilage (pH 7–9), and yellow–brown at advanced spoilage (pH ≥10), consistent with anthocyanin structural transformations. Storage trials with chicken and shrimp confirmed that the Cs/PVA–R5 film displayed the intense coloration and strong response to volatile amines such as ammonia, trimethylamine, and dimethylamine, enabling reliable freshness monitoring. Importantly, the films provided a visual indication when the pH exceeded the edibility threshold of 7.0–7.5, beyond which the samples were deemed unsuitable for consumption. Overall, this work demonstrates the potential of Cs/PVA–roselle anthocyanin films as eco-friendly, low-cost, and effective smart indicators for meat and seafood freshness, offering a practical platform for intelligent food packaging applications.
References
Amaregouda, Y. and K. Kamanna (2023). Preparation and Characterization of Indicator Films from Chitosan/Polyvinyl Alcohol Incorporated Stachytarpheta jamaicensis Anthocyanins for Monitoring Chicken Meat Freshness. Sustainable Food Technology, 1; 738–749
Amaregouda, Y., K. Kamanna, and A. Kamath (2023). Multifunctional Bionanocomposite Films Based on Chitosan/Polyvinyl Alcohol with ZnO NPs and Carissa carandas Extract Anthocyanin for Smart Packaging Materials. ACS Food Science & Technology, 3(9); 1411–1422
Augustyńska-Prejsnar, A., M. Kačániová, P. Hanus, Z. Sokołowicz, and M. Słowiński (2024). Microbial and Sensory Quality Changes in Broiler Chicken Breast Meat During Refrigerated Storage. Foods, 13(24); 4063
Bi, S., J. Pang, L. Huang, M. Sun, X. Cheng, and X. Chen (2020). The Toughness Chitosan-PVA Double Network Hydrogel Based on Alkali Solution System and Hydrogen Bonding for Tissue Engineering Applications. International Journal of Biological Macromolecules, 146; 99–109
Castañeda-Ovando, A., M. D. L. Pacheco-Hernández, M. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán-Vidal (2009). Chemical Studies of Anthocyanins: A Review. Food Chemistry, 113(4); 859–871
Che Hamzah, N. H., N. Khairuddin, I. I. Muhamad, M. A. Hassan, Z. Ngaini, and S. R. Sarbini (2022). Characterisation and Colour Response of Smart Sago Starch–Based Packaging Films Incorporated with Brassica oleracea Anthocyanin. Membranes, 12(9); 913
Chen, H., X. Dong, K. Ou, X. Cong, Y. Liao, Y. Yang, and H. Wang (2025a). A pH-Responsive Dual-Emission Composite for Fast Detection of BAs and Visual Monitoring Seafood Freshness with Large Luminescence Color Difference. Talanta, 282; 126946
Chen, M., T. Yan, J. Huang, Y. Zhou, and Y. Hu (2021). Fabrication of Halochromic Smart Films by Immobilizing Red Cabbage Anthocyanins into Chitosan/oxidized-Chitin Nanocrystals Composites for Real-Time Hairtail and Shrimp Freshness Monitoring. International Journal of Biological Macromolecules, 179; 90–100
Chen, X., H. Xiang, Y. Liang, J. He, R. Chen, Z. Zhu, S. Li, X. Chen, and S. Cheng (2025b). Highly Stable and Multifunctional Intelligent Film Based on Grape Skin Anthocyanin, Polyvinyl Alcohol, Chitosan and Selenopeptide: Preparation, Characterization and Application. Food Hydrocolloids, 158; 110546
Cruz, L., N. Basílio, N. Mateus, V. De Freitas, and F. Pina (2022). Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 122(1); 1416–1481
Ding, C., W. Ma, and J. Zhong (2024). The Influence of Microcrystalline Structure and Crystalline Size on Visible Light Transmission of Polyvinyl Alcohol Optical Films. Optical Materials, 147; 114627
Du, J., H. Dai, H. Wang, Y. Yu, H. Zhu, Y. Fu, L. Ma, L. Peng, L. Li, Q. Wang, and Y. Zhang (2021). Preparation of High Thermal Stability Gelatin Emulsion and Its Application in 3D Printing. Food Hydrocolloids, 113; 106536
Enaru, B., G. Dretcanu, T. D. Pop, A. Stănilă, and Z. Diaconeasa (2021). Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants, 10(12); 1967
Erna, K. H., W. X. L. Felicia, J. M. Vonnie, K. Rovina, K. W. Yin, and M. N. Nur’Aqilah (2022). Synthesis and Physicochemical Characterization of Polymer Film-Based Anthocyanin and Starch. Biosensors, 12(4); 211
Fiddaroini, S., F. Prisilia, S. B. Karo, L. Madaniyah, A. D. Khairana, G. Rahmaniah, S. Amalia, Aulanni’am, M. F. Rahman, L. Dinira, Q. Fardiyah, and A. Sabarudin (2025). Green Synthesis of Nanoparticles Using Cottonwood and Rambutan Honeys: Optimization, Characterization, and Enhanced Antioxidant Activity with Reduced Toxicity Via Oligochitosan Coating. Next Materials, 8; 100685
Genç, İ. Y., G. R, and A. E (2025). Quality Determination of Frozen-Thawed Shrimp Using Machine Learning Algorithms Powered by Explainable Artificial Intelligence. Food Analytical Methods, 18(6); 935–945
Gomes, B. T., L. L. Rodrigues Borges, N. M. E. P. De Leon Da Costa, T. R. Arruda, A. R. C. Ribeiro, C. S. Marques, P. C. Stringheta, T. V. De Oliveira, and N. D. F. F. Soares (2024). Gelatin/polyvinyl Alcohol Films Incorporated with Different Blueberry Extracts As Potential Colorimetric Indicators to Detect Acidic and Basic Vapors. Food Control, 165; 110648
Karanth, S., S. Feng, D. Patra, and A. K. Pradhan (2023). Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Frontiers in Microbiology, 14; 1198124
Katiyo, W., H. L. De Kock, R. Coorey, and E. M. Buys (2020). Sensory Implications of Chicken Meat Spoilage in Relation to Microbial and Physicochemical Characteristics during Refrigerated Storage. LWT – Food Science and Technology, 128; 109468
Klaharn, K., D. Pichpol, T. Meeyam, T. Harintharanon, P. Lohaanukul, and V. Punyapornwithaya (2022). Bacterial Contamination of Chicken Meat in Slaughterhouses and the Associated Risk Factors: A Nationwide Study in Thailand. PLOS ONE, 17(6); e0269416
Kusumawati, R., Syamdidi, A. H. D. Abdullah, R. C. Nissa, B. Firdiana, R. Handayani, I. Munifah, F. R. Dewi, J. Basmal, and S. Wibowo (2025). Physical Properties of Biodegradable Chitosan-Cassava Starch Based Bioplastic Film Mechanics. Science and Technology Indonesia, 10(1); 191–200
Lai, Y., Y. Chiang, Y. Jhan, T. Song, and M. Cheng (2024). Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities. Foods, 13(14); 2172
Latiff, N. F., N. F. Sulaiman, M. I. Shaik, N. J. Mohamad, W. M. Khairul, A. I. Daud, and N. M. Sarbon (2025). Halochromic Smart Film: A Gelatin-Based pH-Sensitive Film Embedded with Anthocyanin from Roselle (Hibiscus sabdariffa) Extracts for Potential Food Spoilage Indicator Application. Journal of Food Science, 90; e70134
Li, L. and Q. Li (2025). Advancements in Chitosan–Anthocyanin Composite Films: Sustainable Food Preservation with Biodegradable Packaging. Foods, 14(10); 1721
Li, X.-M., J. Zhu, Y. Pan, R. Meng, B. Zhang, and H.-Q. Chen (2019). Fabrication and Characterization of Pickering Emulsions Stabilized by Octenyl Succinic Anhydride-Modified Gliadin Nanoparticle. Food Hydrocolloids, 90; 19–27
Liu, D., C. Zhang, Y. Pu, S. Chen, L. Liu, Z. Cui, and Y. Zhong (2022). Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods, 11(13); 1884
Low, J. T., N. I. S. M. Yusoff, N. Othman, T. Wong, and M. U. Wahit (2022). Silk Fibroin-Based Films in Food Packaging Applications: A Review. Comprehensive Reviews in Food Science and Food Safety, 21; 2253–2273
Ma, Y., L. Wen, Y. Liu, P. Du, P. Hu, J. Cao, and W. Wang (2024). Chitosan-Enhanced pH-Sensitive Anthocyanin Indicator Film for the Accurate Monitoring of Mutton Freshness. Polymers, 16(6); 849
Mafe, A. N., G. I. Edo, R. S. Makia, O. A. Joshua, P. O. Akpoghelie, T. S. Gaaz, A. N. Jikah, E. Yousif, E. F. Isoje, U. A. Igbuku, D. S. Ahmed, A. E. A. Essaghah, and H. Umar (2024). A Review on Food Spoilage Mechanisms, Food Borne Diseases and Commercial Aspects of Food Preservation and Processing. Food Chemistry Advances, 5; 100852
Mawarno, B. A. S., A. S. Putri, and I. Fitriana (2024). Effect of Maceration Time on Color Intensity, Bioactive Compounds and Antioxidant Activity of Purple Corn Extract (Zea mays var. Black Aztec). JITIPARI, 9(2); 181–188
Meng, F., X. Yan, F. N. Nkede, M. H. Wardak, T. T. Van, F. Tanaka, and F. Tanaka (2024). An Intelligent Chitosan/Polyvinyl Alcohol Film with Two Types of Anthocyanins for Improved Color Recognition Accuracy and Monitoring Fresh-Cut Pineapple Freshness. Food Packaging and Shelf Life, 46; 101402
Merlusca, I. P., D. S. Matiut, G. Lisa, M. Silion, L. Grădinaru, S. Oprea, and I. M. Popa (2018). Preparation and Characterization of Chitosan–Poly(vinyl Alcohol)–Neomycin Sulfate Films. Polymer Bulletin, 75(12); 3971–3986
Mu, L., J. Bi, H. Zhao, J. Li, H.-M. Hou, G.-L. Zhang, H. Hao, and L. Zhou (2025). Intelligent pH-Responsive Films Based on Natural Blueberry Anthocyanins: A Non-Destructive Monitoring System for the Freshness of Aquatic Products with Prospective Smartphone Compatibility. Food Chemistry: X, 28; 102587
Nguyen, K. D., D. N. D. Phung, T. T. T. Nguyen, O. T. K. Le, T. N. M. Cao, T. T. C. Truong, N. T. T. Phan, and A. P. Le Thi (2025). Colorimetric Chitosan/Polyvinyl Alcohol Composite Membrane Incorporated with Anthocyanins as pH Indicator for Monitoring Fish Freshness. Journal of Applied Polymer Science, 142; e56333
Rais, A., M. Mennani, A. Bahloul, C. El Idrissi El Hassani, Z. Azoubi, R. Khiari, M. Oumam, A. Abourriche, and Z. Kassab (2025). pH-Sensitive Biodegradable Nanocomposite Films Incorporating Chitosan and Red Cabbage Anthocyanins. International Journal of Biological Macromolecules, 321; 146278
Rosalina, Y., E. Warsiki, A. M. Fauzi, and I. Sailah (2022). Study of Anthocyanin Extraction from Red Banana (Musa sapientum L. var Rubra) Waste and Characteristics of Light Effects. Science and Technology Indonesia, 7(4); 522–529
Sanchez-García, M. D., E. Gimenez, and J. M. Lagarón (2008). Morphology and Barrier Properties of Solvent Cast Composites of Thermoplastic Biopolymers and Purified Cellulose Fibers. Carbohydrate Polymers, 71(2); 235–244
Sigurðardóttir, A. R., H. I. Sveinsdóttir, N. Schultz, H. Einarsson, and M. Gudjónsdóttir (2025). Multispectral Imaging As a Predictive Tool for Freshness of Whole Atlantic Cod: Compared with Sensory, Chemical and Microbiological Analysis. Applied Food Research, 5; 101130
Sinela, A., N. Rawat, C. Mertz, N. Achir, H. Fulcrand, and M. Dornier (2017). Anthocyanins Degradation during Storage of Hibiscus sabdariffa Extract and Evolution of Its Degradation Products. Food Chemistry, 214; 234–241
Singh, S., O. F. Nwabor, D. M. Syukri, and S. P. Voravuthikunchai (2021). Chitosan-Poly(vinyl Alcohol) Intelligent Films Fortified with Anthocyanins Isolated from Clitoria ternatea and Carissa carandas for Monitoring Beverage Freshness. International Journal of Biological Macromolecules, 182; 1015–1025
Suzery, M., B. Nudin, D. Nurwahyu Bima, and B. Cahyono (2020). Effects of Temperature and Heating Time on Degradation and Antioxidant Activity of Anthocyanin from Roselle Petals (Hibiscus sabdariffa L.). International Journal of Science, Technology & Management, 1(4); 288–238
Tang, B., Y. He, J. Liu, J. Zhang, J. Li, J. Zhou, Y. Ye, J. Wang, and X. Wang (2019). Kinetic Investigation into pH-Dependent Color of Anthocyanin and Its Sensing Performance. Dyes and Pigments, 170; 107643
Wang, D., X. Wang, Z. Sun, F. Liu, and D. Wang (2022). A Fast-Response Visual Indicator Film Based on Polyvinyl Alcohol/Methylcellulose/Black Wolfberry Anthocyanin for Monitoring Chicken and Shrimp Freshness. Food Packaging and Shelf Life, 34; 100939
Wang, S., J. Wang, S. Wang, and S. Wang (2017). Annealing Improves Paste Viscosity and Stability of Starch. Food Hydrocolloids, 62; 203–211
Xu, H., Y. Shi, L. Gao, N. Shi, J. Yang, and R. Hao (2023). Preparation and Characterization of pH-Responsive Polyvinyl Alcohol/ Chitosan/Anthocyanin Films. Food Science and Technology, 43; e98022
Zhai, X., J. Shi, X. Zou, S. Wang, C. Jiang, J. Zhang, X. Huang, W. Zhang, and M. Holmes (2017). Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring. Food Hydrocolloids, 69; 308–317
Zhang, J., X. Zou, X. Zhai, X. Huang, C. Jiang, and M. Holmes (2019). Preparation of an Intelligent pH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chemistry, 272; 306–312
Zhang, K., Z. Li, X. Huang, Y. Qin, J. Zhang, S. B. H. Hashim, H. Xu, R. Zhang, J. Shi, and X. Zou (2025). Pore-Structure-Tunable Carboxymethyl Cellulose/Polyvinyl Alcohol Aerogel Functionalized with Butterfly Pea Anthocyanin for Real-Time Visual Monitoring of Pork Freshness. Journal of Food Composition and Analysis, 148; 108491
Zhang, W., A. Khan, P. Ezati, R. Priyadarshi, M. A. Sani, N. B. Rathod, G. Goksen, and J. W. Rhim (2024). Advances in Sustainable Food Packaging Applications of Chitosan/Polyvinyl Alcohol Blend Films. Food Chemistry, 443; 138506
Zhang, Y., D. Peng, X. He, H. Zheng, J. Xiao, D. Xu, and N. Yang (2026). Blueberry Anthocyanins-Functionalized Hydrogel Labels for Smartphone-Assisted Real-Time Visual Freshness Monitoring of Perishable Proteins. Talanta, 297; 128813
Zhao, L., Y. Liu, L. Zhao, and Y. Wang (2022). Anthocyanin-Based pH-Sensitive Smart Packaging Films for Monitoring Food Freshness. Journal of Agriculture and Food Research, 9; 100340
Zheng, D., S. Cao, D. Li, Y. Wu, P. Duan, S. Liu, X. Li, X. Zhang, and Y. Chen (2024). Fabrication and Characterization of Chitosan/Anthocyanin Intelligent Packaging Film Fortified by Cellulose Nanocrystal for Shrimp Preservation and Visual Freshness Monitoring. International Journal of Biological Macromolecules, 264; 130692
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.