Structure and Dynamics of Curcumin Encapsulated Lecithin Micelles: A Molecular Dynamics Simulation Study

Lukman Hakim, Diah Mardiana, Urnik Rokhiyah, Maria Lucia Ardhani Dwi Lestari, Zubaidah Ningsih

Abstract

Curcumin is a natural product with potential pharmaceutical applications that can be augmented by drug delivery technology such as nano emulsion. Our study focuses on microscopic structural and dynamics response of curcumin encapsulation in micellar system with lecithin as a natural surfactant under variations of composition and temperature using molecular dynamics (MD) simulations. The results highlight the self-assembly of lecithin micelle, with curcumin encapsulated inside, from initial random configurations in the absence of external field. The variation of composition shows that lecithin can aggregate into spherical and rod-like micelle with the second critical micelle concentration lies between 0.17-0.22 mol dm−3. The radial local density centering at the micelle center of mass shows that the effective radius of micelle is indeed defined by the hydrophilic groups of lecithin molecule and the
encapsulated curcumin molecules are positioned closer to these hydrophilic groups than the innermost part of the micelle. The spherical micelle is shown to be thermally stable within the temperature range of 277-310 K without a perceivable change in the spherical eccentricity. The dynamics of micelle are enhanced by the temperature, but it is shown to be insensitive to the variation of lecithin-curcumin composition within the studied range. Simulation results are in agreement with the pattern obtained from experimental results based on particle size, polydispersity index, and encapsulation efficiency.

References

Abedi Karjiban, R., Basri, M., Rahman, M., Salleh, A., 2012. Structural Properties of Nonionic Tween80 Micelle in Water Elucidated by Molecular Dynamics Simulation. APCBEE Procedia 3, 287–297. https://doi.org/10.1016/j.apcbee.2012.06.084
Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
Bera, I., Payghan, P.V., 2019. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery. Curr. Pharm. Des. 25, 3339–3349. https://doi.org/10.2174/1381612825666190903153043
Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J., 2005. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688. https://doi.org/10.1002/jcc.20290
De Vivo, M., Masetti, M., Bottegoni, G., Cavalli, A., 2016. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 59, 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684
Den Hartogh, D.J., Gabriel, A., Tsiani, E., 2019. Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies. Nutrients 12. https://doi.org/10.3390/nu12010058
Dominguez, H., 2016. Molecular dynamics simulations to study the solvent influence on protein structure. Chem. Phys. Lett. 651, 92–96. https://doi.org/10.1016/j.cplett.2016.03.026
Durrant, J.D., McCammon, J.A., 2011. Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71. https://doi.org/10.1186/1741-7007-9-71
Esperón, A., Baeza-Jiménez, R., Santos-Luna, D., Velasco-Rodríguez, L., Ochoa-Rodríguez, L., Garcia, H., 2020. Bioavailability of curcumin in nanoemulsions stabilized with mono- and diacylglycerols structured with conjugated linoleic acid and n-3 fatty acids. Biocatal. Agric. Biotechnol. 26, 101638. https://doi.org/10.1016/j.bcab.2020.101638
Franklyne, J.S., Nadarajan, A., Ebenazer, A., Tiwari, N., Mukherjee, A., Chandrasekaran, N., 2018. PREPARATION AND CHARACTERIZATION OF EDIBLE OIL NANOEMULSIONS FOR ENHANCED STABILITY AND ORAL DELIVERY OF CURCUMIN. Int. J. Appl. Pharm. 139–146. https://doi.org/10.22159/ijap.2018v10i6.28726
Fuentes-Azcatl, R., Alejandre, J., 2014. Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P/ε. J. Phys. Chem. B 118, 1263–1272. https://doi.org/10.1021/jp410865y
Gupta, K.M., Das, S., Chow, P.S., Macbeath, C., 2020. Encapsulation of Ferulic Acid in Lipid Nanoparticles as Antioxidant for Skin: Mechanistic Understanding through Experiment and Molecular Simulation. ACS Appl. Nano Mater. 3, 5351–5361. https://doi.org/10.1021/acsanm.0c00717
Hakim, L., Dita Saputri, W., Ulfa, S.M., 2016. Molecular dynamics simulation of a reversible hydrophobic-hydrophilic functionalized surface, in: 2016 International Electronics Symposium (IES). Presented at the 2016 International Electronics Symposium (IES), IEEE, Denpasar, Indonesia, pp. 215–218. https://doi.org/10.1109/ELECSYM.2016.7861004
Hakim, L., Kurniawan, I.D.O., Indahyanti, E., Pradana, I.P., 2021. Molecular Dynamics Simulation of Wetting Behavior: Contact Angle Dependency on Water Potential Models. ICS Phys. Chem. 1, 10–10. https://doi.org/10.34311/icspc.2021.1.1.10
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., 1997. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Hoover, W.G., 1985. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
Jalili, S., Saeedi, M., 2016. Study of curcumin behavior in two different lipid bilayer models of liposomal curcumin using molecular dynamics simulation. J. Biomol. Struct. Dyn. 34, 327–340. https://doi.org/10.1080/07391102.2015.1030692
Jannah, M., Lestari, M.L.A.D., Indahyanti, E., Ningsih, Z., n.d. Emulsion Formulation of Curcumin in Soybean Oil with a Combination Surfactant of Tween-80 and Lecithin Using Wet Ball Milling Method. AIP Conf. Proc. In Press.
Jurenka, J.S., 2009. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev. J. Clin. Ther. 14, 141–153.
Kamel, A.E., Fadel, M., Louis, D., 2019. Curcumin-loaded nanostructured lipid carriers prepared using PeceolTM and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int. J. Nanomedicine 14, 5073–5085. https://doi.org/10.2147/IJN.S210484
Kopeć, W., Telenius, J., Khandelia, H., 2013. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS J. 280, 2785–2805. https://doi.org/10.1111/febs.12286
Marrink, S., Tieleman, D., Mark, A., 2000. Molecular Dynamics Simulation of the Kinetics of Spontaneous Micelle Formation. J. Phys. Chem. B 104. https://doi.org/10.1021/jp001898h
Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M., 2009. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164. https://doi.org/10.1002/jcc.21224
Moghadamtousi, S.Z., Kadir, H.A., Hassandarvish, P., Tajik, H., Abubakar, S., Zandi, K., 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int. 2014, 186864. https://doi.org/10.1155/2014/186864
Moghaddasi, F., Housaindokht, M.R., Darroudi, M., Bozorgmehr, M.R., Sadeghi, A., 2018. Soybean oil-based nanoemulsion systems in absence and presence of curcumin: Molecular dynamics simulation approach. J. Mol. Liq. 264, 242–252. https://doi.org/10.1016/j.molliq.2018.05.066
Ningsih, Z., Lestari, M.L.A.D., Maharin, S.A.R., 2021. Preparation and Characterization of Curcumin Nanoemulsion in Olive Oil-Tween 80 System using Wet Ball Milling Method. ICS Phys. Chem. 1, 16–16. https://doi.org/10.34311/icspc.2021.1.1.16
Nosé, S., 1984. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519. https://doi.org/10.1063/1.447334
Ochoa-Flores, A.A., Hernández-Becerra, J.A., Cavazos-Garduño, A., Soto-Rodríguez, I., Sanchez-Otero, M.G., Vernon-Carter, E.J., García, H.S., 2017. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids. Curr. Drug Deliv. 14, 377–385. https://doi.org/10.2174/1567201813666160919142811
Onufriev, A.V., Izadi, S., 2018. Water models for biomolecular simulations. WIREs Comput. Mol. Sci. 8, e1347. https://doi.org/10.1002/wcms.1347
Páez-Hernández, G., Mondragón-Cortez, P., Espinosa-Andrews, H., 2019. Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters. LWT 111, 291–300. https://doi.org/10.1016/j.lwt.2019.05.012
Palazzesi, F., Calvaresi, M., Zerbetto, F., 2011. A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter 7, 9148. https://doi.org/10.1039/c1sm05708a
Parrinello, M., Rahman, A., 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190. https://doi.org/10.1063/1.328693
Piotrovskaya, E.M., Vanin, A.A., Smirnova, N.A., 2006. Molecular dynamics simulation of micellar aggregates in aqueous solution of hexadecyl trimethylammonium chloride with different additives. Mol. Phys. 104, 3645–3651. https://doi.org/10.1080/00268970601014807
Sammalkorpi, M., Karttunen, M., Haataja, M., 2007. Structural Properties of Ionic Detergent Aggregates: A Large-Scale Molecular Dynamics Study of Sodium Dodecyl Sulfate. J. Phys. Chem. B 111, 11722–11733. https://doi.org/10.1021/jp072587a
Shelat, D., Acharya, S., 2016. CUR-CA-THIONE: A novel curcumin concoction with enhanced water solubility and brain bio-availability. Int. J. Pharm. Pharm. Sci. 8, 265–270. https://doi.org/10.22159/ijpps.2016v8i12.15093
Shi, X., Wang, Y., Sun, H., Chen, Y., Zhang, X., Xu, J., Zhai, G., 2019. Heparin-reduced graphene oxide nanocomposites for curcumin delivery: in vitro , in vivo and molecular dynamics simulation study. Biomater. Sci. 7, 1011–1027. https://doi.org/10.1039/C8BM00907D
Sholihat, S., Indahyanti, E., Lestari, M., Ningsih, Z., 2020. Preparation of Curcumin Nanoemulsion in Soybean Oil – Tween 80 System by Wet Ball Milling Method. IOP Conf. Ser. Mater. Sci. Eng. 833, 012044. https://doi.org/10.1088/1757-899X/833/1/012044
Silva, H.D., Poejo, J., Pinheiro, A.C., Donsì, F., Serra, A.T., Duarte, C.M.M., Ferrari, G., Cerqueira, M.A., Vicente, A.A., 2018. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J. Funct. Foods 48, 605–613. https://doi.org/10.1016/j.jff.2018.08.002
Teixeira, C.C.C., Mendonça, L.M., Bergamaschi, M.M., Queiroz, R.H.C., Souza, G.E.P., Antunes, L.M.G., Freitas, L.A.P., 2016. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity. AAPS PharmSciTech 17, 252–261. https://doi.org/10.1208/s12249-015-0337-6
Tomeh, M.A., Hadianamrei, R., Zhao, X., 2019. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 20, 1033. https://doi.org/10.3390/ijms20051033
Turchi, M., Cai, Q., Lian, G., 2019. In Silico Prediction of the Thermodynamic Equilibrium of Solute Partition in Multiphase Complex Fluids: A Case Study of Oil–Water Microemulsion. Langmuir. https://doi.org/10.1021/acs.langmuir.9b01513
Velinova, M., Sengupta, D., Tadjer, A.V., Marrink, S.-J., 2011. Sphere-to-Rod Transitions of Nonionic Surfactant Micelles in Aqueous Solution Modeled by Molecular Dynamics Simulations. Langmuir 27, 14071–14077. https://doi.org/10.1021/la203055t
Vierros, S., Sammalkorpi, M., 2018. Effects of 1-hexanol on C 12 E 10 micelles: a molecular simulations and light scattering study. Phys. Chem. Chem. Phys. 20, 6287–6298. https://doi.org/10.1039/C7CP07511A
Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., 2004. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174. https://doi.org/10.1002/jcc.20035
Wei, Y., Wang, H., Liu, G., Wang, Z., Yuan, S., 2016. A molecular dynamics study on two promising green surfactant micelles of choline dodecyl sulfate and laurate. RSC Adv. 6, 84090–84097. https://doi.org/10.1039/C6RA16536B
Yu, H., Huang, Q., 2012. Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions [WWW Document]. https://doi.org/10.1021/jf300609p

Authors

Lukman Hakim
Diah Mardiana
Urnik Rokhiyah
Maria Lucia Ardhani Dwi Lestari
Zubaidah Ningsih
zubaidah@ub.ac.id (Primary Contact)
Hakim, L., Mardiana, D., Rokhiyah, U., Lestari, M. L. A. D., & Ningsih, Z. . (2021). Structure and Dynamics of Curcumin Encapsulated Lecithin Micelles: A Molecular Dynamics Simulation Study. Science and Technology Indonesia, 6(3), 113–120. https://doi.org/10.26554/sti.2021.6.3.113-120

Article Details