Silica from Natural Sources: a Review on the Extraction and Potential Application as a Supporting Photocatalytic Material for Antibacterial Activity
Abstract
Silica has become a popular material due to its high abundance and many advantages in various fields. This material can be produced synthetically and extracted from nature with resultant advantages in the application of green production. Therefore, this article deals with the form of silica extracted from quartz sand, leaves, and agricultural wastes found in nature. The extraction process from various sources would be described using thermal, biological, and chemical methods. This review also highlights the potential application of silica as a photo catalytic antibacterial-supporting material and discusses its role in increasing the effectiveness of the process. The discussion was continued with research on this procedure, where synthetic auxiliary materials were compared to the extracted silica. Furthermore, results obtained indicated that the extracted material had very good potential as a photocatalyst adjunct in its application in the antibacterial field.
References
Adebisi J. A., Agunsoye, J. O., Bello, S. A., Kolawole, F. O., Ramakokovhu, M. M., Daramola, M. O., Hassan, S. B., 2019, Extraction of Silica from Sugarcane Bagasse, Cassava Periderm and Maize Stalk: Proximate Analysis and Physico-Chemical Properties of Wastes, Waste and Biomass Valorization, 10(3), 617–629.
Adebisi, J. A., Agunsoye, J. O., Bello, S. A., Ahmed, I. I., Ojo, O. A., and Hassan, S. B., 2017, Potential of producing solar grade silicon nanoparticles from selected agro-wastes: A review, Sol. Energy, 142, 68–86.
Agi A., Junin, R., Jaafar, M. Z., Mohsin, R., Arsad, A., Gbadamosi, A., Fung, C. K., Gbonhinbor, J., 2020, Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery, J. Mater. Res. Technol., 9(6), 13054–13066.
Aleksandra, Djurišić B., Yu, H. L., Alan, M. C. N., 2014, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Mater. Horizons, 400–410.
Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., and Khaidir, R. E. M., 2020, The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash, Appl. Sci., 10, 6.
Arshad M., Abbas, M., Ehtisham-ul-Haque S., Farrukh, M.A., Ali, A., Rizvi, H., Soomro, G. A., Ghaffar, A., Yameen, M., Iqbal, M., 2019, Synthesis and characterization of SiO2 doped Fe2O3 nanoparticles: Photocatalytic and antimicrobial activity evaluation, J. Mol. Struct., 1180, 244–250.
Arshad, M., Qayyum, A., Shar, G. A., Soomro, G. A., Nazir, A., Munir, B., Iqbal M., 2018, Zn-doped SiO2 nanoparticles preparation and characterization under the effect of various solvents: Antibacterial, antifungal and photocatlytic performance evaluation,” J. Photochem. Photobiol. B Biol., 185, 176–183.
Asharani, P., Wu, Y., Gong, Z., Valiyaveettil, S., 2008, Toxicity of silver nanoparticles in zebrafish models, Nanotechnology, 19, 1–8.
Bapat, G, Labade, C, Chaudhari, A., and Zinjarde, S, 2016, Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides, Adv. Colloid Interface Sci., 237, 1–14.
Bernstein, R., and Carpi, A., 2015, Properties of Solids, Visionlearning, 3, 2.
Carmona V. B., Oliveira R. M., Silva W. T. L., et al., 2013, Nanosilica from rice husk: extraction and characterization., Ind Crop. Prod., 43, 291–296.
Castellote, M., and Bengtsson N., 2011, Principles of TiO2 Photocatalysis, Appl. Titan. DioxidePhotocatalysis to Constr. Mater., 5, 5–10.
Chakraverty A., Nishra P., Banerjee, D., 1988, Investigation of combustion of raw and acid- leeched rice husk for production of pure amorphous white silica, J Mater Sci, vol. 23, 21–4.
Chatterjee, A., Shamim, S., Jana, A. K., and Basu, J. K., 2020, Insights into the competitive adsorption of pollutants on a mesoporous alumina-silica nano-sorbent synthesized from coal fly ash and a waste aluminium foil, RSC Adv.,10(26), 15514–15522
Chiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., Hsu, Y. J., 2019, Mechanism insights into photodegradable of organic dyes using heterostructure photocatalysts, Catalysts, 9, 430.
Cho, K. H., Park, J. E., Osaka, T., Park, S. G., 2005, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochim. Acta, 51, 956–960.
Eddy, D. R., Puri, F. N., and Noviyanti, A. R., 2015, Synthesis and Photocatalytic Activity of Silica-based Sand Quartz as the Supporting TiO2 Photocatalyst, Procedia Chem., 17, 55–58.
Effendy, 2010, Logam, Aloi, Semikonduktor, dan Superkonduktor. Malang: Bayumedia Publishing.
Elma, M., Rampun E. L. A., Rahma, A., Assyaifia, Z. L., Sumardi, A., Lestaria, A. L., Saputrob, G, S., Biladc, M. R., Darmawan, A., 2020, Carbon templated strategies of mesoporous silica applied for water desalination: A review, J. Water Process Eng., 38.
Erdural, B., Bolukbasi, U., and Karakas, G., 2014, Photocatalytic antibacterial activity of TiO2-SiO2 thin films: The effect of composition on cell adhesion and antibacterial activity, J. Photochem. Photobiol. A Chem., 283, 29–37.
Espíndola-Gonzalez, A., Maxwell, O., Thomas Chinedu, A., Orevaoghene, E. I., Mathew, M., Benson, Z., Michael Olawale, D., 2010, Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes., Nanoscale Res. Lett., 5(9), 1408–1417.
Estevez, M., Vargas, S., Castaño, V. M., and Rodriguez, R., 2009, Silica nano-particles produced by worms through a bio-digestion process of rice husk, J. Non. Cryst. Solids, 355(14–15), 844–850.
Faizul, C. P., Abdullah, C., and Fazlul, B., 2013, Extraction of silica from palm ash using citric acid leaching treatment: Preliminary result, Adv. Mater. Res., 795, 701–706.
Faizul, C. P., Abdullah, C., and Fazlul, B., 2013, Review of extraction of silica from agricultural wastes using acid leaching treatment, Adv. Mater. Res., 626, 997–1000.
Faizul, C. P., Abdullah, C., Fazlul, B., and Noorina, H. J., 2014, Extraction of silica from palm ash using organic acid leaching treatment., Key Eng. Mater., 594–595, 329–333.
Farirai F., Ozonoh, M., Aniokete, T.C., Eterigho-Ikelegbe, O., Mupa, M., Zeyi, B., Daramola, M. O., 2020, Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review, Int. J. Sustain. Eng., 1–22.
Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R., and Pocrifka, L. A., 2015, Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite, Mater. Res., 18(3), 639–643.
Ferronato N., and Torretta, V., 2019, Waste mismanagement in developing countries: A review of global issues, Int. J. Environ. Res. Public Health, 16, 6.
Gao, Q., Xu, J., Bu, X.-H., 2019, Recent advances about metal-organic frameworks in the removal of pollutants from wastewater.,” Coord. Chem., 378,17–31.
Grenda, K., Arnold, J., Gamelas, J. A. F., Cayre, O. J., and Rasteiro, M. G., 2020, Flocculation of silica nanoparticles by natural, wood-based polyelectrolytes, Sep. Purif. Technol., 231, 115888.
Hajipour M. J., Fromm, K. M.,Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., and Mahmoudi, M., 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30(10), 499–511.
Haynes, E., William M., 2011, CRC Handbook of Chemistry and Physics (92nd ed.) ISBN 1439855110. Boca Raton: FL: CRC Press.
Henderson, D. R., & Baker, G. S., 2002, Synchrotron Radiation: Earth, Environmental and Material Sciences Applications, Mineral. Assoc. Canada, 159–178.
Holleman, A. F., and Wiberg, E., 2001, Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5.
Hossain, S. K. S., Mathur, L. and Roy, P. K., 2018, Rice husk/rice husk ash as an alternative source of silica in ceramics: A review, J. Asian Ceram. Soc., 6(4), 299–313.
Hou, Y. X., Abdullah, H., Kuo, D. H., Leu, S. J., Gultom, N. S., and Su, C. H., 2018, A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application, Compos. Part B Eng., 133, 166–176.
Imoisili, P. E., Ukoba, K. O., and Jen, T. C., 2020, Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol-gel, J. Mater. Res. Technol.,9(1), 307–313.
Ishmah, S. N., 2019, Ekstraksi Silika Pasir Pantai Bengkulu Sebagai Pendukung Fotokatalis Titanium Dioksida Dalam Remediasi Limbah, Univeristas Padjadjaran, 2019.
Ishmah, S. N., Permana, M. D., Firdaus, M. L., and Eddy, D. R., 2020, Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method, PENDIPA J. Sci. Educ., 4(2), 1–5
Ismail, A., Widyaningtyas, A. L., Susanto, B. H., and Nasikin, M., 2020, Facile synthesis silica nanoparticles from indonesia silica sand and their physico-chemical properties, Key Eng. Mater., 862, 35–39.
Jafarzadeh, M., Rahman, I. A., and Sipaut, C. S., 2010, Optical properties of amorphous organo-modified silica nanoparticles produced via co-condensation method, Ceram. Int., 36(1), 333–338.
Jal, P. K., Sudharsan, M., Saha, A., Sabita, P., and Mishra, B. K., 2004, Synthesis and characterization of nanosilica prepared by precipitation method, Colloids Surfaces A Physicochem. Eng. Asp., 204, 173–178.
Julia, D. L., 2002, Silica-Titania Composite for Water Treatment, University of Florida, USA.
Kamath, S.R. and Proctor, A., 1998, Silica gel from rice hull ash: preparation and characterization, Cereal Chem. J., 75(4) 484–487.
Khan K., Ullah, M. F., Shahzada, K., Amin, M. N., Bibi, T., Wahab, N., Aljaafari, A., 2020, Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar, Constr. Build. Mater., 258, 119589.
Kim, D. K., Lee, H. G., Cha, C. W., Kim, Y. S. Kang, Y. H., 2007, Synthesis and characterization of antibacterial Ag - SiO2 nanocomposite, J. Phys. Chem. C, 111, 9, 3629–3635.
Kim, M. K., Lee, J. A., Jo, M. R., and Choi, S. J., 2016, Bioavailability of silica, titanium dioxide, and zinc oxide nanoparticles in rats, J. Nanosci. Nanotechnol., 16(6), 6580–6586.
Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S., 2011, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol., 39(1), 77–85.
Klankaw, P., Chawengkijwanich, C., Grisdanurak, N., and Chiarakorn, S., 2012, The hybrid photocatalyst of TiO2-SiO2 thin film prepared from rice husk silica, Superlattices Microstruct., 51(3), 343–352.
Lee D. W., and Yoo, B. R., 2016, Advanced silica/polymer composites: Materials and applications, J. Ind. Eng. Chem., 38, 1–12.
Liang, G., Li, Y., Yang, C., Zi, C., Zhang, Y., Hu, X., Zhao, W., 2020, Production of biosilica nanoparticles from biomass power plant fly ash, Waste Manag., 105, 8–17.
Lutgens, F. K. and Tarbuck, E. J., 2000, Essentials of Geology, 7th Ed. Prentice-Hall.
Madina, F. E., Elvia, R., & Candra, I. N., 2017, Synthesis of Silica from The Sand of Panjang Beach and Its Application for Rhodamine B Adsorption, J. Pendidik. dan Ilmu Kim., 1, 2, 98–101.
Marambio-Jones C., and Hoek, E. M. V., 2010, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res., 12, 5, 1531–1551
Matichenkov, V. V., and Calvert, D.V., 2002, Silicon as a Beneficial Element for Sugarcane, JASST, 22, 21–29.
Mehmood, A., Ghafar, H., Yaqoob, S., Gohar, U. F., and Ahmad, B., 2017, Mesoporous Silica Nanoparticles: A Review, J. Dev. Drugs, 6(2).
Miricioiu M. G., and Niculescu, V. C., 2020, Fly ash, from recycling to potential raw material for mesoporous silica synthesis, Nanomaterials, 10(3), 1–14.
Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., and Mohamed, G. G., 2019, A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers, Sep. Purif. Technol., 210, 935–942.
Morais de, O. A., Alberto dos, R. F., and César M. F. P., 2020, Production of silica gel from waste metal silica residue, Mater. Lett., 275, 128125.
Motlagh, E. K., Kolur, N. A., Sharifian, S. M., and Pirbazari, A. E., 2020, Effect of Silica Extraction on the Porous Structure and Surface Area of Activated Carbon Prepared from Rice Wastes, IChEC, 15–17.
Munasir Triwikantoro D. and Zainuri M, 2015, Synthesis of SiO2 nanopowders con- taining quartz and cristobalite phases from silica sands, Mater Sci-pol., 33, 47–55.
Naddaf, M., Kafa, H., and Ghanem, I., 2020, Extraction and Characterization of Nano-Silica from Olive Stones, Silicon, 12, 1, 185–192, 2020.
Nayak P. P., and Datta, A. K., 2020, Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization,” Silicon.
NDT Resource Center, 2014, Solid State Structure, Materials and Process.
Nilchi, A., Janitabar-Darzi, S., Mahjoub, A. R., and Rasouli-Garmarodi, S., 2010, New TiO2/SiO2 nanocomposites-Phase transformations and photocatalytic studies, Colloids Surfaces A Physicochem. Eng. Asp., 361, 1–3, 25–30,
Okereafor, U., Makhatha, M. Mekuto, L., and Mavumengwana, V., 2020, Gold mine tailings: A potential source of silica sand for glass making, Minerals, 10(5).
Olawale, O., 2020, Bamboo leaves as an alternative source for silica in ceramics using Box Benhken design, Sci. African, 8.
Otero-González, L., Barbero, I., Field, J. A., Shadman, F., and Sierra-Alvarez, R., 2014, Stability of alumina, ceria, and silica nanoparticles in municipal wastewater, Water Sci. Technol., 70, 9, 1533–1539
Pa, F. C., Chik, A., and Bari, M. F., 2016, Palm Ash as an Alternative Source for Silica Production, MATEC Web Conf.,78.
Percival, S. L., Bowler, P. G., Russell, D., 2005, Bacterial resistance to silver in wound care, J. Hosp. Infect., 60, 1–7.
Permatasari, N., Sucahya, T. N., and Dani Nandiyanto, A. B., 2016, Review: Agricultural Wastes as a Source of Silica Material, Indones. J. Sci. Technol., 1(1), 82.
Pieła A., Żymańczyk-Dudaa, E., Brzezińska-Rodaka, M., Dudab, M., Grzesiakc, J., Saeidd, A., Mironiukd, M., Klimek-Ochaba, M., 2020, Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing, Bioorg. Chem., 99, 103773.
Rafiee, E., Shahebrahimi, S., Feyzi, M., Shaterzadeh, M., 2010, Solar Photocatalytic Degradation of Rhodamine B by TiO2 Nanoparticle Composites, University of Gothenburg.
Rahmawati, R. S., 2002, Struktur Padatan Silikon Dioksida, Studi Magi. Institut Teknologi Bandung.
Ramanathan S., Subash, C.B. G., Arshad M.K. Md., Poopalan P., Anbu, P., Lakshmipriya, T., Lee, C. G., 2020, Alkalinized extraction of silica-aluminium nanocomposite from traditional Chinese joss paper: Optical characterizations, Mater. Chem. Phys., 243, 122621.
Rattanaudom, P., Shiau, B. J., Suriyapraphadilok, U., and Charoensaeng, A., 2021, Effect of pH on silica nanoparticle-stabilized foam for enhanced oil recovery using carboxylate-based extended surfactants, J. Pet. Sci. Eng., 196,
Rayner-Canham G. and Overton, T., 2015, Descriptive Inorganic Chemistry, 1st ed. New York: W. H. Freeman and Company.
Razak, H. A., Abdullah, N., Setiabudi, H. D., Yee, C. S., and Ainirazali, N., 2019, Influenced of Ni loading on SBA-15 synthesized from oil Palm ash silica for syngas production, IOP Conf. Ser. Mater. Sci. Eng., 702(1).
Roushdey, S., 2011, Defect Related Luminescence in Silicon Dioxide Network: A Review.
Sapra, G., Chaudhary, V., Kumar, P., Sharma, P., and Saini, A., 2020, Recovery of silica nanoparticles from waste PV modules, Mater. Today Proc., 6–11.
Sarkar, P., Moyez, S. A., Dey, A., Roy, S., and Das, S. K. K., 2017, Experimental investigation of photocatalytic and photovoltaic activity of titania/rice husk crystalline nano-silica hybrid composite, Sol. Energy Mater. Sol. Cells, 172, 93–98.
Sellapan, R., 2013, Mechanisms of Enhanced Activity of Model TiO2/Carbon and TiO2/Metal Nanocomposite Photocatalysts, Chalmers University.
Setyoningrum, T. M., Murni, S. W., and Nandari, W. W., 2020, Extraction of Silica from Kalirejo Minerals, Kokap,1(1), 269–276.
Sevinç A. H., and Durgun, M. Y., 2020, Properties of high-calcium fly ash-based geopolymer concretes improved with high-silica sources, Constr. Build. Mater., 261.
Shaban Hamd, Ahmed, A., Ragab, R., Abukhadra, M. R., Khalek, A. A., Khan, A. A., Parwaz, A., Abdullah, M. M., 2020, Preparation and characterization of MCM-48/nickel oxide composite as an efficient and reusable catalyst for the assessment of photocatalytic activity, Environ. Sci. Pollut. Res., 27, 26, 32670–32682.
Shaterzadeh, E. R., Shahebrahimi, S., Feyzi M., 2012, Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material), Int. Nano Lett., 2, 29–37.
Sirimahachai, U., Ndiege N., Chandrasekharan R., Wongnawa S., and Shannon M.A., 2010, Nanosized TiO2 particles decorated on SiO2 spheres: synthesis and photocatalytic activities.,” J Sol-Gel Sci Technol., 56(5) 3–6.
Sumarno, Y., Novarita, P., Januarty, M., & Yuniarti, “Pemurnian Pasir Silika dengan Metode Leaching Asam dan Bantuan Sonikasi.,” in Seminar Nasional Teknik Kimia Kejuangan, 2015, 1–3.
Tou, M., Luo, Z., Bai, S., Liu, F., Chai, Q., Li, S., Li, Z., 2017, Sequential coating upconversion NaYF4:Yb,Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications, Mater. Sci. Eng. C, 70, 1141–1148.
Ubonchonlakate K., et al., 2017, Self-cleaning superhydrophobic coatings based on PDMS and TiO2/SiO2 nanoparticles, J. Phys. Chem. C, 12(1) 1–7.
Uda M. N. A., Subash, C. B., Gopinath, Uda Hashim, N. H., Halim, N. A., Parmin, M. N., Uda, A., Anbu, P. To 2020, Production and characterization of silica nanoparticles from fly ash: conversion of agro-waste into resource, Prep. Biochem. Biotechnol., 1–10.
Vaibhav, V., Vijayalakshmi, U., and Roopan, S. M., 2014, Agricultural waste as a source for the production of silica nanoparticles,Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 139, 515–520.
Venkateswaran, S., Yuvakkumar, R., Rajendran, V., 2012, Nano silicon from nano silica using natural resource (Rha) for solar cell fabrication, Relat. Elem., 188, 9, 1178–1193.
Wang, J., Liu, M., Wang Y., Zhou, Z., Xu, D., Du, P., Cheng, X., 2020, Synergistic effects of nano-silica and fly ash on properties of cement-based composites, Constr. Build. Mater., 262, 120737,
Yadav V. K., Suriyaprabha R., Khan, S. H., Singh, B., Gnanamoorthy G., Choudhary, N., Yadav, A. K., Kalasariya, H., 2019, A novel and efficient method for the synthesis of amorphous nanosilica from fly ash tiles, Mater. Today Proc., 26, 701–705,
Yang, B., Leclercq, L., Clacens, J. M., and Nardello-Rataj, V., 2017, Acidic/amphiphilic silica nanoparticles: New eco-friendly Pickering interfacial catalysis for biodiesel production, Green Chem., 19(19), 4552–4562, 2017.
Yao, Y. Q. A., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., 2015, comprehensive review on the applications of coal fly ash, Earth-Sci. Rev., 141, 105–121.
Zemnukhova, L. A., Panasenko, A. E., Artem’yanov, A. P., Tsoy, E. A., 2015, Dependence of Porosity of Amorphous Silicon Dioxide Prepared from Rice Straw on Plant Variety,” BioResources, 10, 3713–3723.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.