Electro-adsorption as a Hybrid Processing to Removed Oil from Synthetic Oily Solution by Using Activated Carbon and Iron Electrodes

Lia Cundari, Bazlina Dawami Afrah, Suci Dwijayanti, Alvina Suryadinata, Aldi Ramadhani


Biosolar contains oil, fatty acids, emulsifiers, bactericides, and other chemicals. If the oil contents are mixed with water, it will become hazardous waste and affect drinking water sources, endanger human health, air pollution, affect agricultural production, and damage the natural landscape, so the oil content must be processed to reduce its hazardous content. One of the methods used in treating oily solutions is adsorption. The adsorption method for oily solution treatment is ineffective because it requires several stages, so the required capital is relatively larger and takes longer. Electro-adsorption is one of the methods that is being developed for treating oily solutions. Electro-adsorption is a hybrid separation technology to break down oil emulsions in wastewater and some other organic content. The purpose of this study is to characterize the activated carbon and determine the effect of voltage and time on synthetic oily solution treatment in terms of COD value and oil-fat content. A synthetic oily solution is made by mixing 1 g of biosolar/B30 into the water from the Musi River to a volume of 1 L. The application of the electro-adsorption method uses commercially activated carbon as an adsorbent and iron as an electrode. Variations given to the process with voltage 0, 5, 10, 15 V and time 0, 5, 10, 15, 20, and 25 minutes. The characteristic of activated carbon showed a size change in the pore size from 2.58 µm to 1.98 µm and a reduction of surface area from 740 (±180) m2/g to 730 (±120) m2/g. The electro-adsorption method was effective in treating oily solutions. The decrease of COD reaches the maximum level at a voltage 10 V for 25 minutes, which was 75.92% from 62.33 mg/L to 15 mg/L initially, while the concentration of oil-fat obtains the maximum level at a voltage of 5 V for 5 minutes that is equal to 99.65%, initially 303.19 mg/L to 1.05 mg/L. The optimum condition of the electro-adsorption process in synthetic oily solution was at the voltage of 5 V and a time of 5 minutes. The electro-adsorption process is an effective method to treat synthetic oily solutions.


Barbir, F. (2005). PEM Electrolysis for Production of Hydrogen from Renewable Energy Sources. Solar Energy, 78(5); 661–669

Bhagawan, D., V. Chandan, K. Srilatha, G. Shankaraiah, M. Rani, and V. Himabindu (2018). Industrial Wastewater Treatment using Electrochemical Process. In IOP Conference Series: Earth and Environmental Science, 191; 012022

Casillas, H. A. M., D. L. Cocke, J. A. Gomes, P. Morkovsky, J. R. Parga, E. Peterson, and C. Garcia (2007). Electrochemistry Behind Electrocoagulation using Iron Electrodes. ECS Transactions, 6(9); 1

Coca-Prados, J. and G. Gutiérrez-Cervelló (2010). Water Purification and Management. Springer

Gryta, M., K.Karakulski, and A. Morawski (2001). Purification of Oily Wastewater by Hybrid UF/MD. Water Research, 35(15); 3665–3669

Hamid, R. A., P. Purwono, and W. Oktiawan (2017). Penggunaan Metode Elektrolisis Menggunakan Elektroda Karbon dengan Variasi Tegangan Listrik dan Waktu Elektrolisis dalam Penurunan Konsentrasi TSS dan COD pada Pengolahan Air Limbah Domestik. Jurnal Teknik Lingkungan, 6(1); 1–18 (in Indonesia)

Idrus, R., B. P. Lapanporo, and Y. S. Putra (2013). Pengaruh Suhu Aktivasi Terhadap Kualitas Karbon Aktif Berbahan Dasar Tempurung Kelapa. Prisma Fisika, 1(1); 50–55 (in Indonesia)

Khairunisa, R. (2008). Kombinasi Teknik Elektrolisis dan Teknik Adsorpsi Menggunakan Karbon Aktif untuk Menurunkan Konsentrasi Senyawa Fenol dalam Air. Skripsi. Jakarta: Universitas Indonesia (in Indonesia)

Koren, J. and U. Syversen (1995). State of The Art Electroflocculation. Filtration & Separation, 32(2); 153–146

Larue, O., E. Vorobiev, C. Vu, and B. Durand (2003). Electrocoagulation and Coagulation by Iron of Latex Particles in Aqueous Suspensions. Separation and Purication Technology, 31(2); 177–192

Mohammed, S. A., I. Faisal, and M. M. Alwan (2011). Oily Wastewater Treatment using Expanded Beds of Activated Carbon and Zeolite. Iraqi Journal of Chemical and Petroleum Engineering, 12(1); 1–12

Nandiyanto, A. B. D., R. Oktiani, and R. Ragadhita (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1); 97–118

Okiel, K., M. El-Sayed, and M. Y. El-Kady (2011). Treatment of Oil–Water Emulsions by Adsorption Onto Activated Carbon, Bentonite and Deposited Carbon. Egyptian Journal of Petroleum, 20(2); 9–15

Poulopoulos, S., E. Voutsas, H. Grigoropoulou, and C. Philippopoulos (2005). Stripping as a Pretreatment Process of Industrial Oily Wastewater. Journal of Hazardous Materials, 117(2-3); 135–139

Ramli, A. N. and R. M. Ghazi (2020). Removal of Oil and Grease in Wastewater using Palm Kernel Shell Activated Carbon. In IOP Conference Series: Earth and Environmental Science, 549; 012064

Rivai, H. (1995). Asas Pemeriksaan Kimia. UI-Press, Jakarta, 26 (in Indonesia)

Riyanti, A., M. Kasman, and M. Riwan (2019). Efektivitas Penurunan Chemichal Oxygen Demand (COD) dan pH Limbah Cair Industri Tahu dengan Tumbuhan Melati Air melalui Sistem Sub-Surface Flow Wetland. Jurnal Daur Lingkungan, 2(1); 16–20 (in Indonesia)

Sahara, E., N. P. W. Kartini, and J. Sibarani (2017). Pemanfaatan Arang Aktif dari Limbah Tanaman Gumitir (Tagetes erecta) Teraktivasi Asam Fosfat Sebagai Adsorben Ion Pb2+ dan Cu2+ Dalam Larutan. Cakra Kimia (Indonesian E-Journal of Applied Chemistry), 5(2); 67–74 (in Indonesia)

Saputra, F. A. (2018). Pengolahan Limbah Cair Berminyak dengan Teknologi Membran. Master’s thesis, Teknik Kimia Institut Teknologi Bandung (in Indonesia)

Sembiring, M. and T. Sinaga (2003). Active Charcoal (Introduction and Manufacturing Process). Faculty of Industrial Engineering, University of North Sumatra. Medan

Siregar, R. D., T. A. Zaharah, and N. Wahyuni (2015). Penurunan Kadar COD (Chemical Oxygen Demand) Limbah Cair Industri Kelapa Sawit Menggunakan Arang Aktif Biji Kapuk (Ceiba Petandra). Jurnal Kimia Khatulistiwa, 4(2); 62–66 (in Indonesia)

Sivakumar, B., C. Kannan, and S. Karthikeyan (2012). Preparation and Characterization of Activated Carbon Prepared from Balsamodendron caudatum Wood Waste Through Various Activation Processes. Rasayan Journal, 5(3); 321–327

Ulucan, K. and U. Kurt (2015). Comparative Study of Electrochemical Wastewater Treatment Processes for Bilge Water as Oily Wastewater: a Kinetic Approach. Journal of Electroanalytical Chemistry, 747; 104–111

Xie, S., W. Ren, C. Qiao, K. Tong, J. Sun, M. Zhang, X. Liu, and Z. Zhang (2018). An Electrochemical Adsorption Method for The Reuse of Waste Water-Based Drilling Fluids. Natural Gas Industry B, 5(5); 508–512

Yan, L., H. Ma, B. Wang, Y. Wang, and Y. Chen (2011). Electrochemical Treatment of Petroleum Refinery Wastewater with Three-Dimensional Multi-Phase Electrode. Desalination, 276(1-3); 397–402

Ziati, M., F. Khemmari, M. Kecir, and S. Hazourli (2017). Removal of Chromium from Tannery Wastewater by Electrosorption on Carbon Prepared from Peach Stones: Effect of Applied Potential. Carbon Letters, 21; 81–85


Lia Cundari
liacundari@ft.unsri.ac.id (Primary Contact)
Bazlina Dawami Afrah
Suci Dwijayanti
Alvina Suryadinata
Aldi Ramadhani
Cundari, L., Afrah, B. D., Dwijayanti, S., Suryadinata, A. ., & Ramadhani, A. . (2022). Electro-adsorption as a Hybrid Processing to Removed Oil from Synthetic Oily Solution by Using Activated Carbon and Iron Electrodes. Science and Technology Indonesia, 7(3), 344–352. https://doi.org/10.26554/sti.2022.7.3.344-352

Article Details

Most read articles by the same author(s)