Determination of (+)-Catechin and Antioxidant Activity in Faloak (Sterculia quadrifida R. Br) Stem Bark Infusion

Audrey Gracelia Riwu, Jusak Nugraha, Djoko Agus Purwanto, Erwin Astha Triyono

Abstract

Oxidative stress is a condition that can damage human cells and tissues and has been linked to a number of illnesses, including cancer, cardiovascular disease, autoimmune disorders, and neurological diseases. Oxidative stress conditions can be brought on by pollution, radiation exposure, and an unhealthy lifestyle. Antioxidants are substances that can be used to both prevent and treat oxidative stress. This study aimed to identify and quantify (+)-catechin levels and antioxidant activity of the stem bark of Sterculia quadrifida R. Br extracted by the infusion method, a method similar to traditional medicine processing generally in the community. Determination of (+)-catechin and antioxidant activity of S. quadrifida were evaluated by HPLC and DPPH assay, respectively. Quantification of (+) catechin content by HPLC system with wavelength 280 nm and antioxidant activity by spectrophotometry method with wavelength 517 nm. The results show that the mean value of (+)-catechin level was 7.786% and the IC50 value of the antioxidant activity was 51.5 ug/mL having a moderate antioxidant activity category. S. quadrifida stem bark infusion can be utilized as a medication candidate for the prevention or treatment of a variety of disorders caused by oxidative stress.

References

Allam, H., M. Bennaceur, R. Ksouri, R. Sahki, A. Marouf, and H. Benamar (2020). Identication of Phenolic Compounds and Assessment of the Antioxidant and Antibacterial Properties of Thymelaea microphylla Coss. et Dur. from Western Algerian Sahara (Ain-Sefra Province). Jordan Journal of Pharmaceutical Sciences, 13(3); 363–377

Azwanida, N. (2015). A Review on the Extraction Methods Use In Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants, 4(196); 2167–0412

Bartoszek, M., J. Polak, and M. Chorążewski (2018). Comparison of Antioxidant Capacities of Dierent Types of Tea Using the Spectroscopy Methods and Semi-empirical Mathematical Model. European Food Research and Technology, 244(4); 595–601

Bernatoniene, J. and D. M. Kopustinskiene (2018). The Role of Catechins In Cellular Responses to Oxidative Stress. Molecules, 23(4); 965

Chang, C. L. and R. T. Wu (2011). Quantication of (+)- Catechin and (-)-Epicatechin in Coconut Water by LC–MS. Food Chemistry, 126(2); 710–717

Di Meo, S. and P. Venditti (2020). Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxidative Medicine and Cellular Longevity, 2020; 9829176

Dillak, H. I., E. B. E. Kristiani, and S. Kasmiyati (2019). Secondary Metabolites and Antioxidant Activity of Ethanolic Extract of Faloak (Sterculia quadrida). Biosaintika: Journal of Biology & Biology Education, 11(3); 296–303

Diniyah, N., M. B. Alam, A. Javed, A. Fanar, H. J. Choi, and S. H. Lee (2022). In Silico and Docking Studies on the Binding Activities of Keap1 of Antioxidant Compounds in Non-oilseed Legumes. Arabian Journal of Chemistry; 104414

Gottumukkala, R. V., N. Nadimpalli, K. Sukala, and G. V. Subbaraju (2014). Determination of Catechin and Epicatechin Content in Chocolates by High-performance Liquid Chromatography. International Scholarly Research Notices, 2014; 628196

Govaerts, R., E. Nic Lughadha, N. Black, R. Turner, and A. Paton (2021). The World Checklist of Vascular Plants, a Continuously Updated Resource for Exploring Global Plant Diversity. Scientic Data, 8(1); 1–10

Hidalgo, G. I. and M. P. Almajano (2017). Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants, 6(1); 7

Isemura, M. (2019). Catechin in Human Health and Disease. Molecules, 24(3); 528

Keskin, C. (2018). Medicinal Plants and Their Traditional Uses. Journal od Advances in Plant Biology, 1(2); 8–12

Koch, W., W. Kukula Koch, Ł. Komsta, Z. Marzec, W. Szwerc, and K. Głowniak (2018). Green Tea Quality
Evaluation Based on its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules, 23(7); 1689

Lee, H. D., Y. Lee, H. Kim, H. Kim, C. G. Park, and S. Lee (2020). HPLC/UV Quantication of (+)-Catechin in Filipendula Glaberrima from Different Regions and Flowering Stages. Korean Journal of Pharmacognosy, 51(4); 291–296

Lee, L. S., S. H. Kim, Y. B. Kim, and Y. C. Kim (2014). Quantitative Analysis of Major Constituents in Green Tea with Different Plucking Periods and Their Antioxidant Activity. Molecules, 19(7); 9173–9186

Lourenço, S. C., M. Moldão Martins, and V. D. Alves (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22); 4132

Musial, C., A. Kuban Jankowska, and M. Gorska Ponikowska (2020). Beneficial Properties of Green Tea Catechins. International Journal of Molecular Sciences, 21(5); 1744

Nain, C. W., E. Mignolet, M.-F. Herent, J. Quetin Leclercq, C. Debier, M. M. Page, and Y. Larondelle (2022). The Catechins Profile of Green Tea Extracts Aspects the Antioxidant Activity and Degradation of Catechins in DHA Rich Oil. Antioxidants, 11(9); 1844

Nimse, S. B. and D. Pal (2015). Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC advances, 5(35); 27986–28006

Nurliayana, I., Z. Nurul, and A. Rohaya (2016). Quantication of Catechin in Leaves and Stems of Malaysian Uncaria Gambir (Hunter) Roxb. by HPLC-DAD. Malaysian Journal of Analytical Sciences, 20(3); 567–572

Pakkirisamy, M., S. K. Kalakandan, and K. Ravichandran (2017). Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma Caesia Roxb (Black Turmeric). Pharmacognosy Journal, 9(6); 952 965

Pharmawati, M. and L. P. Wrasiati (2020). Phytochemical Screening and FTIR Spectroscopy on Crude Extract From Enhalus Acoroides Leaves. Malaysian Journal of Analytical Sciences, 24(1); 70–77

Pinto, I. C., C. Cerqueira Coutinho, Z. M. F. d. Freitas, E. P. d. Santos, F. A. d. Carmo, and E. Ricci (2017). Development and Validation of an Analytical Method Using High Performance Liquid Chromatography (HPLC) to Determine Ethyl Butylacetylaminopropionate in Topical Repellent Formulations. Brazilian Journal of Pharmaceutical Sciences, 53(2); 16033

Pizzino, G., N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, and A. Bitto (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017; 8416763

Réblová, Z. (2012). Effect of Temperature on the Antioxidant Activity of Phenolic Acids. Czech Journal of Food Sciences, 30(2); 171–175

Roman, L. and K. Solomiia (2019). HPLC-UV Determination of Catechins and Gallic Acid in Aerial Parts of Astragalus glycyphyllos L. Dhaka University Journal of Pharmaceutical Sciences, 18(2); 241–247

Roy, M. and T. K. Dutta (2021). Evaluation of Phytochemicals and Bioactive Properties in Mangrove Associate Suaeda Monoica Forssk. ex JF Gmel. of Indian Sundarbans. Frontiers in pPharmacology, 12; 232

Saklar, S., E. Ertas, I. S. Ozdemir, and B. Karadeniz (2015). Effects of Different Brewing Conditions on Catechin Content and Sensory Acceptance in Turkish Green Tea Infusions. Journal of Food Science and Technology, 52(10); 6639–6646

Saragih, G. S. and S. Siswadi (2019). Antioxidant Activity of Plant Parts Extracts from Sterculia Quadrida R. Br. Asian Journal of Pharmaceutical and Clinical Research, 12(7); 143–148

Shukla, A. S., A. K. Jha, R. Kumari, K. Rawat, S. Syeda, and A. Shrivastava (2018). Chapter 9. Role of catechins
in chemosensitization. In: B. Bonavida (Ed). Role of Nutraceuticals in Chemoresistance to Cancer; 169–198

Silva, L. C., R. D. Machado, D. R. Silva, V. Amaral, J. R. Paula, E. C. Conceição, and J. A. Paula (2017). Quantication of Catechin in the Spray-dried Extract of Pimenta pseudocaryophyllus. Revista Brasileira de Farmacognosia, 27; 645–649

Sinala, S., I. Ibrahim, and A. M. Salasa (2020). The Ability Free Radical Binding of Dengen’s Stem Bark Extract (Dillenia serrata) From Luwu District Indonesia. Pharmacognosy Journal, 12(6); 1340–1345

Singh, B. N., S. Shankar, and R. K. Srivastava (2011). Green Tea Catechin, Epigallocatechin-3-Gallate (EGCG): Mechanisms, Perspectives and Clinical Applications. Biochemical Pharmacology, 82(12); 1807–1821

Siswadi, S., E. Faridah, and T. Hertiani (2021). Total Flavonoid Content of Faloak (Sterculia quadrida) Bark in Varieties of Bark Colour, Tree Diameter and Growth Altitude. Journal of Tropical Forest Science, 33(3); 298–307

Sivanesan, I., M. Muthu, A. Kannan, S. S. C. Pushparaj, J. W. Oh, and J. Gopal (2022). Identication of Epigallocatechin 3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. Separations, 9(8); 209

Tenda, P. E., M. Hilaria, and A. P. Ramadani (2021). Antiplasmodial Activity of Faloak Bark (Sterculia quadrida, R. Br.) Extract From East Nusa Tenggara, Indonesia. Indonesian Journal of Pharmacology and Therapy, 2(2); 67–73

Wachtel Galor, S. and I. Benzie (2011). Herbal Medicine: Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In: I.F.F. Benzie, and S. Wachtel-Galor (Eds). Herbal Medicine: Biomolecular and Clinical Aspects, 2(3); 1–9

Xu, D. P., Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, J. J. Zhang, and H. B. Li (2017). Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences, 18(1); 96

Yamaji, K. and Y. Ichihara (2012). The Role of Catechin and Epicatechin in Chemical Defense Against Damping O Fungi of Current Year Fagus Crenata Seedlings in Natural Forest. Forest Pathology, 42(1); 1–7

Authors

Audrey Gracelia Riwu
Jusak Nugraha
Djoko Agus Purwanto
djokoagus@ff.unair.ac.id (Primary Contact)
Erwin Astha Triyono
Riwu, A. G., Jusak Nugraha, Djoko Agus Purwanto, & Erwin Astha Triyono. (2023). Determination of (+)-Catechin and Antioxidant Activity in Faloak (Sterculia quadrifida R. Br) Stem Bark Infusion. Science and Technology Indonesia, 8(1), 59–65. https://doi.org/10.26554/sti.2023.8.1.59-65

Article Details