Enhanced Ammonium Adsorption from Aqueous Solutions Using Ethylenediaminetetraacetic Acid (EDTA) Modified Lampung (Indonesia) Natural Zeolite: Isotherm, Kinetic, and Thermodynamic Studies
Abstract
The environmental concern related to excessive ammonium in water bodies necessitates efficient and cost-effective removal techniques. This study investigated the modification of natural zeolite collected from the Tanggamus district of Lampung Province, Indonesia, with ethylenediaminetetraacetic acid (EDTA) to enhance its performance for ammonium adsorption from aqueous solution. The modified and natural zeolites were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherm, and scanning electron microscopy (SEM). Results indicated that the modification did not cause significant structural changes but increased the mesoporosity of the zeolites, which was beneficial for ammonium adsorption. The adsorption studies revealed that the EDTA modified zeolites consistently outperformed the natural zeolite and that the adsorption process was exothermic in nature. The Langmuir and Freundlich isotherm models fit the adsorption data well, indicating that the adsorption process occurs on both homogenous and heterogeneous surfaces. Thermodynamic studies confirmed that the adsorption process was exothermic and that the EDTA modification increased the spontaneity of the ammonium adsorption process. Overall, this study highlights the potential of EDTA-modified zeolites as an effective material for ammonium removal from aqueous solutions.
References
Agudelo, J., B. Mezari, E. Hensen, S. Giraldo, and L. Hoyos (2014). On the Effect of EDTA Treatment on the Acidic Properties of USY Zeolite and Its Performance in Vacuum Gas Oil Hydrocracking. Applied Catalysis A: General, 488; 219–230
Ahmad, N., Z. A. Zahara, A. Wijaya, F. S. Arsyad, I. Royani, and A. Lesbani (2023). Fabrication and Characterization Fe3O4/Humic Acid for the Efficient Removal of Malachite Green. Science and Technology Indonesia, 8(4); 616–625
Akgül, M. and A. Karabakan (2011). Promoted Dye Adsorption Performance Over Desilicated Natural Zeolite. Microporous and Mesoporous Materials, 145(1-3); 157–164
Alkhaldi, A., A. Alsultan, K. Alsaikhan, R. Xie, J. Li, and Z. Peng (2023). Removal and Recovery of Ammonium and Phosphate from Wastewater Using a Redox Flow Deionization Cell (RFDC). ACS ES&T Water, 3(4); 1182–1191
Alshameri, A., C. Yan, Y. Al-Ani, A. S. Dawood, A. Ibrahim, C. Zhou, and H. Wang (2014). An Investigation into the Adsorption Removal of Ammonium by Salt Activated Chinese (Hulaodu) Natural Zeolite: Kinetics, Isotherms, and Thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45(2); 554–564
Assar, E., A. Meysami, and M. Zare (2020). Morphology Analysis and Characterization of Clinoptilolite/polyvinylpyrrolidone-Zeolite Composite Nanofibers. Journal of Materials Engineering and Performance, 29(7); 4233–4240
Barus, B. R., D. Dianursanti, and M. D. Solikhah (2021). Prospect of Sukabumi Natural Zeolite for Petrochemical Industry: Preparation and Characterization of Natural Zeolite. In AIP Conference Proceedings, volume 2376. AIP Publishing, page 030007
Chang, H., M. Lu, Y. Zhu, Z. Zhang, Z. Zhou, Y. Liang, and R. D. Vidic (2022). Consideration of Potential Technologies for Ammonia Removal and Recovery from Produced Water. Environmental Science & Technology, 56(6); 3305–3308
Chen, T. L., L. H. Chen, Y. J. Lin, C. P. Yu, H. W. Ma, and P. C. Chiang (2021). Advanced Ammonia Nitrogen Removal and Recovery Technology Using Electrokinetic and Stripping Process Towards a Sustainable Nitrogen Cycle: A Review. Journal of Cleaner Production, 309; 127369
Dashtpeyma, G., S. R. Shabanian, J. Ahmadpour, and M. Nikzad (2022). The Investigation of Adsorption Desulphurization Performance Using Bimetallic CuCe and NiCe Mesoporous Y Zeolites: Modification of Y Zeolite by H4EDTA-NaOH Sequential Treatment. Fuel Processing Technology, 235; 107379
Fajdek-Bieda, A., A. Wróblewska, P. Miądlicki, J. Tołpa, and B. Michalkiewicz (2021). Clinoptilolite As a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. Reaction Kinetics, Mechanisms and Catalysis, 133; 997–1011
Feng, A., Y. Yu, L. Mi, Y. Cao, Y. Yu, and L. Song (2019). Synthesis and Characterization of Hierarchical Y Zeolites Using NH4HF2 As Dealumination Agent. Microporous and Mesoporous Materials, 280; 211–218
Fu, H., Y. Li, Z. Yu, J. Shen, J. Li, M. Zhang, T. Ding, L. Xu, and S. S. Lee (2020). Ammonium Removal Using a Calcined Natural Zeolite Modified with Sodium Nitrate. Journal of Hazardous Materials, 393; 122481
Gao, S., H. Peng, B. Song, J. Zhang, W. Wu, J. Vaughan, P. Zardo, J. Vogrin, S. Tulloch, and Z. Zhu (2023). Synthesis of Zeolites from Low-Cost Feeds and Its Sustainable Environmental Applications. Journal of Environmental Chemical Engineering, 11(1); 108995
Guida, S., C. Potter, B. Jefferson, and A. Soares (2020). Preparation and Evaluation of Zeolites for Ammonium Removal from Municipal Wastewater through Ion Exchange Process. Scientific Reports, 10(1); 12426
Guo, X. and J. Wang (2019). A General Kinetic Model for Adsorption: Theoretical Analysis and Modeling. Journal of Molecular Liquids, 288; 111100
Han, B., C. Butterly, W. Zhang, J. Z. He, and D. Chen (2021). Adsorbent Materials for Ammonium and Ammonia Removal: A Review. Journal of Cleaner Production, 283; 124611
Hu, G., J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, and Q. Liu (2021). Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chemical Engineering Journal, 417; 129209
Khaleque, A., M. M. Alam, M. Hoque, S. Mondal, J. B. Haider, B. Xu, M. Johir, A. K. Karmakar, J. Zhou, and M. B. Ahmed (2020). Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environmental Advances, 2; 100019
Khalil, A., N. Sergeevich, and V. Borisova (2018). Removal of Ammonium from Fish Farms by Biochar Obtained from Rice Straw: Isotherm and Kinetic Studies for Ammonium Adsorption. Adsorption Science & Technology, 36(5-6); 1294–1309
Li, Y., L. Li, and J. Yu (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6); 928–949 Lin, J., Z. Zhang, and Y. Zhan (2017). Effect of Humic Acid Preloading on Phosphate Adsorption onto Zirconium-Modified Zeolite. Environmental Science and Pollution Research, 24; 12195–12211
Ma, Y. K., S. Rigolet, L. Michelin, J. L. Paillaud, S. Mintova, F. Khoerunnisa, T. J. Daou, and E. P. Ng (2021). Facile
and Fast Determination of Si/Al Ratio of Zeolites Using FTIR Spectroscopy Technique. Microporous and Mesoporous Materials, 311; 110683
Maesen, T. (2007). The Zeolite Scene–An Overview. Introduction to Zeolite Molecular Sieves, 38; 1–12
Maghfiroh, M., N. Park, H. Chang, J. Jung, K. Ahn, H. Lim, and W. Kim (2023). Ammonium Removal and Recovery Using Natural Zeolites and Air Stripping Technique for Greywater Treatment. International Journal of Environmental Science and Technology, 20(5); 4931–4942
Manalu, R. N., Z. A. Zahara, R. Mohadi, et al. (2023). Ni-Cr Layered Double Hydroxide/Microcrystalline Cellulose Composite as Adsorbents for Malachite Green Dye. Indonesian Journal of Material Research, 1(2); 51–60
Misaelides, P. (2011). Application of Natural Zeolites in Environmental Remediation: A Short Review. Microporous and Mesoporous Materials, 144(1-3); 15–18
Mourabet, M., H. El Boujaady, A. El Rhilassi, H. Ramdane, M. Bennani-Ziatni, R. El Hamri, and A. Taitai (2011). Defluoridation of Water Using Brushite: Equilibrium, Kinetic and Thermodynamic Studies. Desalination, 278(1-3); 1–9
Muscarella, S. M., L. Badalucco, B. Cano, V. A. Laudicina, and G. Mannina (2021). Ammonium Adsorption, Desorption and Recovery by Acid and Alkaline Treated Zeolite. Bioresource Technology, 341; 125812
Nguyen, T. D., T. M. P. Nguyen, H. T. Van, L. H. Nguyen, T. D. Nguyen, T. H. V. Nguyen, T. H. H. Chu, T. H. Nguyen, L. Ha, and N. Vinh (2022). Adsorption Removal of Ammonium from Aqueous Solution Using Mg/Al Layered Double Hydroxides-Zeolite Composite. Environmental Technology & Innovation, 25; 102244
Palapa, N. R., N. Juleanti, R. Mohadi, T. Taher, A. Rachmat, and A. Lesbani (2020). Copper Aluminum Layered Double Hydroxide Modified by Biochar and Its Application As an Adsorbent for Procion Red. Journal of Water and Environment Technology, 18(6); 359–371
Palapa, N. R., A. Wijaya, et al. (2023). Layered Double Hydroxide Coated by Carbon-Based Material for Environmental Dye Pollutant. Indonesian Journal of Material Research, 1(3); 84–90
Pérez-Botella, E., S. Valencia, and F. Rey (2022). Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews, 122(24); 17647–17695
Pliekhov, O., O. Pliekhova, I. Arčon, F. Bondino, E. Magnano, G. Mali, and N. Z. Logar (2020). Study of Water Adsorption on EDTADealuminated Zeolite Y. Microporous and Mesoporous Materials, 302; 110208
Ramesh, K., K. S. Reddy, I. Rashmi, and A. Biswas (2014). Nanostructured Natural Zeolite: Surface Area, Meso Pore and Volume Distribution, and Morphology. Communications in Soil Science and Plant Analysis, 45(22); 2878–2897
Reeve, P. J. and H. J. Fallowfield (2018). Natural and Surfactant Modified Zeolites: A Review of Their Applications for Water Remediation with a Focus on Surfactant Desorption and Toxicity Towards Microorganisms. Journal of Environmental Management, 205; 253–261
Rodríguez-Iznaga, I., V. Petranovskii, F. Castillón-Barraza, and B. Concepción-Rosabal (2011). Copper-Silver Bimetallic System on Natural Clinoptilolite: Thermal Reduction of Cu2+ and Ag+ Exchanged. Journal of Nanoscience and Nanotechnology, 11(6); 5580–5586
Sadowska, K., K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J. M. Triguero, and F. Rey (2013). Desilication of Highly Siliceous Zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine Hydroxide. Microporous and Mesoporous Materials, 168; 195–205
Shi, J., Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, L. Shi, and R. Fahim (2018). Preparation and Application of Modified Zeolites As Adsorbents in Wastewater Treatment. Water Science and Technology, 2017(3); 621–635
Sihombing, J. L., S. Gea, A. N. Pulungan, H. Agusnar, B. Wirjosentono, and Y. A. Hutapea (2018). The Characterization of Sarulla Natural Zeolite Crystal and Its Morphological Structure. In AIP Conference Proceedings, volume 2049. AIP Publishing, page 020062
Skorynina, A. A., B. O. Protsenko, O. A. Usoltsev, S. A. Guda, and A. L. Bugaev (2023). Quantitative Structural Description of Zeolites by Machine Learning Analysis of Infrared Spectra. Inorganic Chemistry, 62(17); 6608 6616
Sun, Y., J. Tang, G. Li, Y. Hua, Y. Sun, S. Hu, and X. Wen (2022). Adsorption, Separation and Regeneration of Cation-Exchanged X Zeolites for Lng Purification: Li+, K+, Mg2+ and Ca2+. Microporous and Mesoporous Materials, 340; 112032
Taher, T., E. K. A. Melati, M. Febrina, S. Maulana, M. A. Asagabaldan, A. Rianjanu, A. Lesbani, and R. R. Mukti (2023a). Effect of Desilication on Indonesian Natural Zeolite for the Enhancement of Ammonium Ion Removal from Aqueous Solutions. Silicon; 1–11
Taher, T., A. Munandar, N. Mawaddah, M. S. Wisnubroto, P. M. S. B. N. Siregar, N. R. Palapa, A. Lesbani, and Y. G. Wibowo (2023b). Synthesis and Characterization of Montmorillonite–Mixed Metal Oxide Composite and Its Adsorption Performance for Anionic and Cationic Dyes Removal. Inorganic Chemistry Communications, 147; 110231
Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing (2015). Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10); 1051–1069
Vaičiukyniene, D., A. Mikelionien ˙ e, A. Baltušnikas, A. Kantau- ˙ tas, and A. Radzevičius (2020). Removal of Ammonium Ion from Aqueous Solutions by Using Unmodified and H2O2- Modified Zeolitic Waste. Scientific Reports, 10(1); 352
Vamvuka, D., E. Loupasis, E. Chamilaki, and E. Sdoukou (2024). Adsorption of Ammonium from Wastewaters by an Almond Kernel Derived Biochar Modified by Potassium Hydroxide or Dolomite and Activated by Steam. Environmental Advances, 15; 100465
Volavšek, J., O. Pliekhov, O. Pliekhova, G. Mali, and N. Zabukovec Logar (2022). Study of Water Adsorption on EDTA-Modified LTA Zeolites. Nanomaterials, 12(8); 1352
Wang, J. and X. Guo (2020). Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258; 127279
Wang, J. Q., Y. X. Huang, Y. Pan, and J. X. Mi (2014). Hydrothermal Synthesis of High Purity Zeolite a from Natural Kaolin without Calcination. Microporous and Mesoporous Materials, 199; 50–56
Wang, S. and Y. Peng (2010). Natural Zeolites As Effective Adsorbents in Water and Wastewater Treatment. Chemical Engineering Journal, 156(1); 11–24
Wu, F. C., R. L. Tseng, S. C. Huang, and R. S. Juang (2009). Characteristics of Pseudo-Second-Order Kinetic Model for Liquid-Phase Adsorption: A Mini-Review. Chemical Engineering Journal, 151(1-3); 1–9
Wu, Z., Y. Fang, J. Zhou, K. Wang, B. Tan, and J. Zhou (2022). Succinic Acid-Assisted Modification of a Natural Zeolite and Preparation of Its Porous Pellet for Enhanced Removal of Ammonium in Wastewater Via Fixed-Bed Continuous Flow Column. Journal of Water Process Engineering, 48; 102906
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.