Synthesis and Antibacterial Properties of Fluorapatite and FAp-ZnO-Chitosan Composite as Dental Implant Materials
Abstract
Regenerative biomaterials research has continued to grow in recent decades, one of which is dental implants. The material that can be used is fluorapatite (FAp), as it is a significant element of human bones and teeth. FAp has better chemical and thermal stability than other apatite materials. However, FAp has low antibacterial properties, so it needs to be composited with other antibacterial materials, such as zinc oxide (ZnO) and chitosan. In addition, chitosan was also added to stabilize FAp and ZnO an effort to increase antibacterial and in vitro bioactivity in apatite formation. Therefore, this research intends to synthesize and assess the antibacterial properties and in vitro bioactivity of FAp-ZnO chitosan to increase its potential as a dental implant manufacturing material. FAp and ZnO were synthesized and then composited with chitosan into FAp-ZnO-chitosan by a simple mixing method. The FAp-ZnO-chitosan composite was successfully synthesized by looking at X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM EDX) characterization results. The in vitro bioactivity of the composite showed new surface growth during immersion with simulated body fluid (SBF) solution, indicating potential attachment of the implant material to the tissue. The antibacterial properties of FAp-ZnO-chitosan also showed an increased zone of inhibition compared to the single material. This indicates that the FAp-ZnO-chitosan composite material has the potential to be used as a dental implant material.
References
Alhilou, A., T. Do, L. Mizban, B. H. Clarkson, D. J. Wood, and M. G. Katsikogianni (2016). Physicochemical and Antibacterial Characterization of a Novel Fluorapatite Coating. ACS Omega, 1(2); 264–276
Almoudi, M. M., A. S. Hussein, M. I. A. Hassan, and N. M. Zain (2018). A Systematic Review on Antibacterial Activity of Zinc Against Streptococcus Mutans. The Saudi Dental Journal, 30(4); 283–291
Azaman, F. A., K. Zhou, M. D. M. Blanes-Martínez, M. Brennan Fournet, and D. M. Devine (2022). Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels, 8(11); 696
Barandehfard, F., M. K. Rad, A. Hosseinnia, K. Khoshroo, M. Tahriri, H. E. Jazayeri, and L. Tayebi (2016). The Addition of Synthesized Hydroxyapatite and Fluorapatite Nanoparticles to a Glass-Ionomer Cement for Dental Restoration and Its Effects on Mechanical Properties. Ceramics International, 42(15); 17866–17875
Basu, B. (2017). Natural Bone and Tooth: Structure and Properties; 45–85
Bhowmick, A., S. L. Banerjee, N. Pramanik, P. Jana, T. Mitra, A. Gnanamani, M. Das, and P. P. Kundu (2018). Organically Modified Clay Supported Chitosan/Hydroxyapatite-Zinc Oxide Nanocomposites with Enhanced Mechanical and Biological Properties for the Application in Bone Tissue Engineering. International Journal of Biological and Macromolecules, 106; 11–9
Billah, R. E. K., Y. Abdellaoui, Z. Anfar, G. Giácoman-Vallejos, M. Agunaou, and A. Soufiane (2020). Synthesis and Characterization of Chitosan/Fluorapatite Composites for the Removal of Cr (VI) from Aqueous Solutions and Optimized Parameters. Water, Air, and Soil Pollution, 231; 1–14
Borkowski, L., A. Przekora, A. Belcarz, K. Palka, G. Jozefaciuk, T. Lübek, and G. Ginalska (2020). Fluorapatite Ceramics for Bone Tissue Regeneration: Synthesis, Characterization, and Assessment of Biomedical Potential. Materials Science and Engineering: C, 116; 1–10
Chand, P., A. Gaur, A. Kumar, and U. K. Gaur (2015). Effect of NaOH Molar Concentration on Optical and Ferroelectric Properties of ZnO Nanostructures. Applied Surface Science, 356; 438–446
Chen, F. M. and X. Liu (2016). Advancing Biomaterials of Human Origin for Tissue Engineering. Progress in Polymer Science, 53; 86–168
Chithra, M., M. Sathya, and K. Pushpanathan (2015). Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method. Acta Metallurgica Sinica (English Letters), 28(3); 394–404
Elhendawi, H., R. M. Felfel, B. M. Abd El-Hady, and F. M. Reicha (2014). Effect of Synthesis Temperature on the Crystallization and Growth of in situ Prepared Nanohydroxyapatite in Chitosan Matrix. ISRN Biomaterials, 2014; 1–8
Erlangga, M., C. Charlena, and I. H. Suparto (2024). Synthesis and Characterization of Fluorapatite-Copper (II) Oxide with Sol-Gel Method as an Antibacterial Biomaterial. Jurnal Kimia Sains dan Aplikasi, 27(4); 174–181
Fatoni, A., V. F. Hidayah, S. Suyata, H. Diastuti, and M. D. Anggraeni (2023). Chitosan–Fe3O4 Nanoparticles Cryogel for Glucose Biosensor Development. Science and Technology Indonesia, 8(1); 52–58
Fereshteh, Z., M. Fathi, and R. Mozaffarinia (2015). Synthesis and Characterization of Fluorapatite Nanoparticles via a Mechanochemical Method. Journal of Cluster Science, 26(4); 1041–1053
Geevarghese, R., S. S. Sajjadi, A. Hudecki, S. Sajjadi, N. R. Jalal, T. Madrakian, and M. J. Łos (2022). Biodegradable and Non-biodegradable Biomaterials and Their Effect on Cell Differentiation. International Journal of Molecular Sciences, 23(24); 16185
Gritsch, L. (2019). An Investigation on Antibiotic-Free Antibacterial Materials Combining Bioresorbable Polyesters, Chitosan and Therapeutic Ions. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Intannia, W., C. Charlena, and I. H. Suparto (2023). Hydroxyapatite-ZnO Biomimetic Toothpaste Formulation from Rice Snail Shell Waste. Science and Technology Indonesia, 8(3); 486–493
Khefanny, Y. C., C. Charlena, and S. Sugiarti (2024). Synthesis and Characterization of ZnO/Cellulose Acetate Composite and Its Activity as Antibacterial Agent. Science and Technology Indonesia, 9(2); 215–223
Khofiyatuzziyadah, A. A., C. Charlena, and A. Maddu (2024). Synthesis and Characterization of Golden Snail Shell-based Fluorapatite via Precipitation and Solid-State Reaction Methods. Materials International, 6(4); 1–12
Kim, G., J. Kim, and H. Youn (2018). Effect of Temperature, pH, and Reaction Duration on Microbially Induced Calcite Precipitation. Applied Sciences, 8(8); 1277
Koutu, V., L. Shastri, and M. M. Malik (2016). Effect of NaOH Concentration on Optical Properties of Zinc Oxide Nanoparticles. Materials Science-Poland, 34(4); 819–827
Kus-Liśkiewicz, M., J. Rzeszutko, Y. Bobitski, A. Barylyak, G. Nechyporenko, V. Zinchenko, dan J. Zebrowski (2019). Alternative Approach for Fighting Bacteria and Fungi: Use of Modified Fluorapatite. Journal of Biomedical Nanotechnology, 15(4); 848–855.
Manzoor, U., S. Siddique, R. Ahmed, Z. Noreen, H. Bokhari, dan I. Ahmad (2016). Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles. PLoS One, 11(5); 1–12.
Moldovan, M., D. Prodan, V. Popescu, C. Prejmerean, C. Sarosi, M. Saplonţai, dan E. Vasile (2015). Structural and Morphological Properties of HA-ZnO Powders Prepared for Biomaterials. Open Chemistry, 13(1); 725–733.
Nikpour, M. R., S. M. Rabiee, dan M. Jahanshahi (2012). Synthesis and Characterization of Hydroxyapatite/Chitosan Nanocomposite Materials for Medical Engineering Applications. Composites Part B: Engineering, 43(4); 1881–1886.
Petkova, P., A. Francesko, M. M. Fernandes, E. Mendoza, I. Perelshtein, A. Gedanken, dan T. Tzanov (2014). Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles. ACS Applied Materials and Interfaces, 6(2); 1164–1172.
Prakasam, M., J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, dan L. Berzina-Cimdina (2017). Biodegradable Materials and Metallic Implants—a Review. Journal of Functional Biomaterials, 8(4); 44.
Rubel, R. I., M. H. Ali, M. A. Jafor, dan M. M. Alam (2019). Carbon Nanotubes Agglomeration in Reinforced Composites: A Review. AIMS Materials Science, 6(5); 756–780.
Saha, N., K. Keskinbora, E. Suvaci, dan B. Basu (2010). Sintering, Microstructure, Mechanical, and Antimicrobial Properties of HAp-ZnO Biocomposites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95(2); 430–440.
Said, H. A., H. Noukrati, H. Ben Youcef, A. Bayoussef, H. Oudadesse, dan A. Barroug (2021). Mechanical Behavior of Hydroxyapatite-Chitosan Composite: Effect of Processing Parameters. Minerals, 11(2); 213.
Salehi, S., M. Kharaziha, M. Salehi, dan V. Saidi (2020). In situ Synthesis of Fluorapatite-ZnO Nanocomposite Powder via Mechanical Alloying for Biomedical Applications. International Journal of Applied Ceramic Technology, 17(4); 1998–2007.
Sanam, M. U., A. I. Detha, dan N. K. Rohi (2022). Detection of Antibacterial Activity of Lactic Acid Bacteria, Isolated from Sumba Mare’s Milk, Against Bacillus cereus, Staphylococcus aureus, dan Escherichia coli. Journal of Advanced Veterinary and Animal Research, 9(1); 53.
Seyedmajidi, S. dan M. Seyedmajidi (2022). Fluorapatite: A Review of Synthesis, Properties and Medical Applications vs Hydroxyapatite. Iranian Journal of Materials Science and Engineering, 19(2); 1–20.
Singh, A. dan A. K. Dubey (2018). Various Biomaterials and Techniques for Improving Antibacterial Response. ACS Applied Bio Materials, 1(1); 3–20.
Sutha, S., K. Kavitha, G. Karunakaran, dan V. Rajendran (2013). In-Vitro Bioactivity, Biocorrosion and Antibacterial Activity of Silicon Integrated Hydroxyapatite/Chitosan Composite Coating on 316 L Stainless Steel Implants. Materials Science and Engineering: C, 33(7); 4046–4054.
Tondnevis, F., M. A. Ketabi, R. Fekrazad, A. Sadeghi, dan M. M. Abolhasani (2019). Using Chitosan Besides Nano Hydroxyapatite and Fluorohydroxyapatite Boost Dental Pulp Stem Cell Proliferation. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 42; 39–50.
Tredwin, C. J., A. M. Young, G. Georgiou, S. H. Shin, H. W. Kim, dan J. C. Knowles (2013). Hydroxyapatite, Fluor-Hydroxyapatite and Fluorapatite Produced via The Sol–Gel Method: Optimisation, Characterisation, and Rheology. Dental Materials, 29(2); 166–173.
Venkatesan, J., R. Jayakumar, S. Anil, dan S. K. Kim (2016). Nanocomposites for Musculoskeletal Tissue Regeneration. Woodhead Publishing, Cambridge, UK.
Vidhya, G. dan E. K. Girija (2019). Comparative Study of Hydroxyapatite Prepared from Eggshells and Synthetic Precursors by Microwave Irradiation Method for Medical Applications. Materials Today: Proceedings, 15; 344–352.
Webler, G. D., M. J. M. Zapata, L. C. Agra, E. Barreto, A. O. S. Silva, J. M. Hickmann, dan E. J. S. Fonseca (2014). Characterization and Evaluation of Cytotoxicity of Biphasic Calcium Phosphate Synthesized by a Solid-State Reaction Route. Current Applied Physics, 14(6); 876–880.
Wu, C. dan Y. Xiao (2009). Evaluation of The in Vitro Bioactivity of Bioceramics. Bone and Tissue Regeneration Insights, 2(1); 25–29.
Yousef, J. M. dan E. N. Danial (2012). In Vitro Antibacterial Activity and Minimum Inhibitory Concentration of Zinc Oxide and Nano-Particle Zinc Oxide Against Pathogenic Strains. J Health Sci, 2(4); 38–42.
Yusof, N. A. A., N. M. Zain, dan N. Pauzi (2019). Synthesis of ZnO Nanoparticles with Chitosan as Stabilizing Agent and Their Antibacterial Properties Against Gram-Positive and Gram-Negative Bacteria. International Journal of Biological Macromolecules, 124; 1132–1136.
Zhao, I. S., M. L. Mei, Q. L. Li, E. C. M. Lo, dan C. H. Chu (2017). Arresting Simulated Dentine Caries with Adjunctive Application of Silver Nitrate Solution and Sodium Fluoride Varnish: An In Vitro Study. International Dental Journal, 67(4); 206–214.
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.