Hydrochar and Humic Acid as Template of ZnAl Layered Double Hydroxide for Adsorption of Phenol

Muhammad Badaruddin, Nur Ahmad, Erni Salasia Fitri, Aldes Lesbani, Risfidian Mohadi

Abstract

The adsorbents potential ZnAl-LDH, ZnAl-Hydrochar, and ZnAl-Humic acid were prepared using the coprecipitation method. The adsorbents were characterization by XRD, FTIR, and BET analysis. XRD peaks of ZnAl-LDH at 10.29°, 20.07°, 29.59°, 32.12°, 34.02°, 48.06°, and 60.16°. The FTIR absorption peak was observed at 3400-3500 cm−1, 1600-1700 cm−1, 1381 cm−1, 1000 cm−1, 500-700 cm−1. All adsorbents exhibited N2 adsorption-desorption isotherms type IV classified as a mesoporous structure (pore size= 2-50 nm). The surface areas of composites were higher than LDH and following order: ZnAl-Hydrochar > ZnAl-Humic acid > ZnAl-LDH. The kinetic parameter showed the pseudo-second-order kinetics model. The maximum adsorption capacity of ZnAl-LDH, ZnAl-Hydrochar, and ZnAl-Humic acid were 48.077 mg/g, 90.090 mg/g, 94.340 mg/g, respectively; with Freundlich isotherm model. Reusability after 5 times of ZnAl-LDH, ZnAl-Hydrochar, and ZnAl-Humic acid in the range 49.81-0.890%, 95.92-9.84%, and 70.02-5.72%, respectively. The adsorbent can be used up to 3 times.

References

Ahmad, N., Suryani Arsyad, F., Royani, I., & Lesbani, A. (2022). Selectivity of Malachite Green on Cationic Dye Mixtures Toward Adsorption on Magnetite Humic Acid. Environment and Natural Resources Journal, 20(6), 1–10.

Ahmad, N., Wijaya, A., Salasia Fitri, E., Suryani Arsyad, F., Mohadi, R., & Lesbani, A. (2022). Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide. In Science and Technology Indonesia (Vol. 7, Issue 3).

Ahmadi, S., & Igwegbe, C. A. (2018). Adsorptive removal of phenol and aniline by modified bentonite: adsorption isotherm and kinetics study. Applied Water Science, 8(6).

Asnaoui, H., Dehmani, Y., Khalis, M., & Hachem, E. K. (2020). Adsorption of phenol from aqueous solutions by Na–bentonite: kinetic, equilibrium and thermodynamic studies. International Journal of Environmental Analytical Chemistry.

Badhai, P., Kashyap, S., & Behera, S. K. (2020). Adsorption of phenol red onto GO-Fe3O4 hybrids in aqueous media. Environmental Nanotechnology, Monitoring and Management, 13.

Bouteraa, S., Saiah, F. B. D., Hamouda, S., & Bettahar, N. (2020). Zn-M-CO3 layered double hydroxides (M=Fe, Cr, or Al): Synthesis, characterization, and removal of aqueous indigo carmine. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 43–54.

Cao, Y., Wang, Y., Zhou, F., Huang, J., & Xu, M. (2022). Acylamino-functionalized hyper-cross-linked polymers for efficient adsorption removal of phenol in aqueous solution. Separation and Purification Technology, 303, 122229.

Chaari, I., Touil, A., & Medhioub, M. (2021). Adsorption-desorption of phenolic compounds from olive mills wastewater using Tunisian natural clay. Chinese Journal of Chemical Engineering, 40, 287–292.

da Silva, M. C. F., Schnorr, C., Lütke, S. F., Knani, S., Nascimento, V. X., Lima, É. C., Thue, P. S., Vieillard, J., Silva, L. F. O., & Dotto, G. L. (2022). KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption. Chemical Engineering Research and Design, 187, 387–396.

de Farias, M. B., Prediger, P., & Vieira, M. G. A. (2022). Conventional and green-synthesized nanomaterials applied for the adsorption and/or degradation of phenol: A recent overview. In Journal of Cleaner Production (Vol. 367). Elsevier Ltd.

de La Luz-Asunción, M., Sánchez-Mendieta, V., Martínez-Hernández, A. L., Castaño, V. M., & Velasco-Santos, C. (2015). Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. Journal of Nanomaterials, 2015.

Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., Abouarnadasse, S., & Abdallaoui, A. (2020). Comparative study of malachite green and phenol adsorption on synthetic hematite iron oxide nanoparticles (α-Fe2O3). Surfaces and Interfaces, 21.

Dehmani, Y., & Abouarnadasse, S. (2020). Study of the adsorbent properties of nickel oxide for phenol depollution. Arabian Journal of Chemistry, 13(5), 5312–5325.

Dehmani, Y., Alrashdi, A. A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., & Chung, I. M. (2020). Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arabian Journal of Chemistry, 13(5), 5474–5486.

Dehmani, Y., Khalki, O. el, Mezougane, H., & Abouarnadasse, S. (2021). Comparative study on adsorption of cationic dyes and phenol by natural clays. Chemical Data Collections, 33.

Desmiarti, R., Trianda, Y., Martynis, M., Viqri, A., Yamada, T., & Li, F. (2019). Phenol adsorption in water by granular activated carbon from coconut shell. International Journal of Technology, 10(8), 1488–1497.

Dong, F. X., Yan, L., Zhou, X. H., Huang, S. T., Liang, J. Y., Zhang, W. X., Guo, Z. W., Guo, P. R., Qian, W., Kong, L. J., Chu, W., & Diao, Z. H. (2021). Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. Journal of Hazardous Materials, 416.

Elhalil, A., Elmoubarki, R., Machrouhi, A., Sadiq, M., Abdennouri, M., Qourzal, S., & Barka, N. (2017). Photocatalytic degradation of caffeine by ZnO-ZnAl2O4 nanoparticles derived from LDH structure. Journal of Environmental Chemical Engineering, 5(4), 3719–3726.

Ge, M., Wang, X., Du, M., Liang, G., Hu, G., & Alam, S. M. J. (2018). Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies. Materials, 12(1).

Girish, C. R., & Ramachandra Murty, V. (2014). Adsorption of Phenol from Aqueous Solution Using Lantana camara , Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies . International Scholarly Research Notices, 2014, 1–16.

Gupta, A., & Balomajumder, C. (2015). Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. Journal of Water Process Engineering, 6, 1–10.

Ho, Z. H., & Adnan, L. A. (2021). Phenol Removal from Aqueous Solution by Adsorption Technique Using Coconut Shell Activated Carbon. Tropical Aquatic and Soil Pollution, 1(2), 98–107.

Jain, M., Khan, S. A., Sahoo, A., Dubey, P., Pant, K. K., Ziora, Z. M., & Blaskovich, M. A. T. (2022). Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresource Technology, 352.

Li, A., Deng, H., Ye, C., & Jiang, Y. (2020). Fabrication and Characterization of Novel ZnAl-Layered Double Hydroxide for the Superadsorption of Organic Contaminants from Wastewater. ACS Omega, 5(25), 15152–15161.

Liu, X., Tu, Y., Liu, S., Liu, K., Zhang, L., Li, G., & Xu, Z. (2021). Adsorption of ammonia nitrogen and phenol onto the lignite surface: An experimental and molecular dynamics simulation study. Journal of Hazardous Materials, 416.

Lu, S., Liu, W., Wang, Y., Zhang, Y., Li, P., Jiang, D., Fang, C., & Li, Y. (2019). An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. International Journal of Biological Macromolecules, 135, 790–797.

Mandal, A., & Das, S. K. (2019). Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. Journal of Environmental Chemical Engineering, 7(4).

Mohadi, R., Siregar, P. M. S. B. N., Palapa, N. R., & Lesbani, A. (2022). Preparation of ZnAl-chitosan Composite for the Selective Adsorption of Methylene Blue Dye in Water. Makara Journal of Science, 26(2), 128–136.

Palapa, N. R., Taher, T., Wijaya, A., & Lesbani, A. (2021). Modification of cu/cr layered double hydroxide by keggin type polyoxometalate as adsorbent of malachite green from aqueous solution. Science and Technology Indonesia, 6(3), 209–217.

Qu, Y., Qin, L., Liu, X., & Yang, Y. (2022). Magnetic Fe3O4/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater. Separation and Purification Technology, 294.

Rashid, M., Price, N. T., Gracia Pinilla, M. Á., & O’Shea, K. E. (2017). Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Research, 123(3), 353–360.

Rathee, G., Awasthi, A., Sood, D., Tomar, R., Tomar, V., & Chandra, R. (2019). A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes. Scientific Reports, 9(1).

Sathya Priya, D., & Sureshkumar, M. v. (2020). Synthesis of Borassus flabellifer fruit husk activated carbon filter for phenol removal from wastewater. International Journal of Environmental Science and Technology, 17(2), 829–842.

Selvanathan, M., Yann, K. T., Chung, C. H., Selvarajoo, A., Arumugasamy, S. K., & Sethu, V. (2017). Adsorption of Copper(II) Ion from Aqueous Solution Using Biochar Derived from Rambutan (Nepheliumlappaceum) Peel: Feedforward Neural Network Modelling Study. Water, Air, and Soil Pollution, 228(8).

Shao, Y., Bao, M., Huo, W., Ye, R., Liu, Y., & Lu, W. (2022). Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process. Journal of Cleaner Production, 335(November 2021), 130302.

Siregar, P. M. S. B. N., Normah, Juleanti, N., Wijaya, A., Palapa, N. R., Mohadi, R., & Lesbani, A. (2021). Mg/Al-CH, Ni/Al-CH, and ZnAl-CH as adsorbents for Congo Red removal in aqueous solution. Communications in Science and Technology, 6(2), 74–79.

Tshemese, S. J., Mhike, W., & Tichapondwa, S. M. (2021). Adsorption of phenol and chromium (VI) from aqueous solution using exfoliated graphite: Equilibrium, kinetics and thermodynamic studies. Arabian Journal of Chemistry, 14(6).

Vithanage, M., Ashiq, A., Ramanayaka, S., & Bhatnagar, A. (2020). Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. Science of the Total Environment, 737.

Xie, B., Qin, J., Wang, S., Li, X., Sun, H., & Chen, W. (2020). Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation. International Journal of Environmental Research and Public Health, 17(3).

Zhang, F., Zhang, S., Chen, L., Liu, Z., & Qin, J. (2021). Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater. Industrial Crops and Products, 160.

Zhang, J., Liu, N., Gong, H., Chen, Q., & Liu, H. (2022). Hydroxyl-functionalized hypercrosslinked polymers with ultrafast adsorption rate as an efficient adsorbent for phenol removal. Microporous and Mesoporous Materials, 336.

Zubair, M., Ihsanullah, I., Abdul Aziz, H., Azmier Ahmad, M., & Al-Harthi, M. A. (2021). Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. In Bioresource Technology (319). 124128

Authors

Muhammad Badaruddin
Nur Ahmad
Erni Salasia Fitri
Aldes Lesbani
Risfidian Mohadi
risfidian.mohadi@unsri.ac.id (Primary Contact)
Badaruddin, M., Ahmad, N., Salasia Fitri, E., Lesbani, A., & Mohadi, R. (2022). Hydrochar and Humic Acid as Template of ZnAl Layered Double Hydroxide for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 492–499. https://doi.org/10.26554/sti.2022.7.4.492-499

Article Details