Preparation of Hydrochar from Salacca zalacca Peels by Hydrothermal Carbonization: Study of Adsorption on Congo Red Dyes and Regeneration Ability
Abstract
Hydrochar of Salacca zalacca peels (HC-SP) is prepared by hydrothermal carbonization treatment of Salacca zalacca peels (SP) obtained from local fruits at Palembang, South Sumatera, Indonesia, with the resulting yield weight reaching 90%. Materials are characterized using the XRD diffraction, FTIR spectrum, and SEM-EDX. The XRD pattern shows the characteristics of the formation of amorphous compounds. The FTIR spectrum confirms the presence of functional groups O-H, C-H, C=C, and C-O. Data of SEM-EDX show that materials have heterogeneous morphologies, form aggregates, and in HC-SP materials there is an increase in carbon content from the initial material. The capacity of SP in the congo red (CR) adsorption process is 33.003 mg/g and increases to 133.333 mg/g in HC-SP. The maximum dye adsorbed was achieved at pH 4. The adsorption kinetics followed PSO with the equilibrium adsorption occurring at 90 minutes, and the adsorption isotherm followed the Langmuir isotherm with the value of R2 closer to the value of 1. A positive 4H value indicated that the adsorption is an endothermic process. In contrast, an 4S value suggested that the degree of irregularity in the adsorption process is small in large concentrations. Based on data regeneration ability, materials of SP and HC-SP can be used in the three cycles regeneration process of the CR adsorption process. The adsorption process of CR occurs physically and chemically based on enthalpy values and FT-IR data after being adsorbed with CR.
References
Arie, A. A., H. Kristianto, and F. Apecsiana (2018). Adsorption of Cu (II) from Aqueous Solution by Salacca Peel Based Activated Carbons. Journal of Chemistry and Applied Chemical Engineering, 2(1); 1–9
Borth, K. W., C. W. Galdino, V. de Carvalho Teixeira, and F. J. Anaissi (2021). Iron Oxide Nanoparticles Obtained From Steel Waste Recycling as a Green Alternative for Congo Red Dye Fast Adsorption. Applied Surface Science, 546; 149126
Brahma, D. and H. Saikia (2022). Synthesis of ZrO2/MgAl-LDH Composites and Evaluation of its Isotherm, Kinetics and Thermodynamic Properties in the Adsorption of Congo Red Dye. Chemical Thermodynamics and Thermal Analysis; 100067
Camilo, F. C., T. P. de Araujo, H. B. Quesada, A. A. Moura, M. P. Moises, R. Bergamasco, S. H. Faria, and M. A. S. D. de Barros (2021). Synthesis of Hydrochars Derived from Industrial Laundry Sludge and its Application in the Removal of Cationic Dye. Journal of Water Process Engineering, 40; 101999
Dbik, A., S. Bentahar, M. El Khomri, N. El Messaoudi, and A. Lacherai (2020). Adsorption of Congo Red Dye from Aqueous Solutions Using Tunics of the Corm of the Saffron. Materials Today: Proceedings, 22; 134–139
Dhaouadi, F., L. Sellaoui, L. E. Hernández-Hernández, A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H. E. ReynelÁvila, H. A. González-Ponce, S. Taamalli, F. Louis, and A. B. Lamine (2021). Preparation of an Avocado Seed Hydrochar and its Application as Heavy Metal Adsorbent: Properties and Advanced Statistical Physics Modeling. Chemical Engineering Journal, 419; 129472
Espro, C., A. Satira, F. Mauriello, Z. Anajafi, K. Moulaee, D. Iannazzo, and G. Neri (2021). Orange Peels Derived Hydrochar for Chemical Sensing Applications. Sensors and Actuators B: Chemical, 341; 130016
Fatimah, I., G. Purwiandono, I. Sahroni, A. Wijayana, M. Faraswati, A. D. Putri, W.-C. Oh, and R.-a. Doong (2022). Magnetically Separable Photocatalyst of Magnetic Biochar from Snake Fruit Peel for Rhodamine B Photooxidation. Environmental Nanotechnology, Monitoring & Management, 17; 100669
Fatimah, I., I. Sahroni, M. S. E. Dahlyani, A. M. N. Oktaviyani, and R. Nurillahi (2021). Surfactant Modified Salacca zallacca Skin as Adsorbent for Removal of Methylene Blue and Batik’s Wastewater. Materials Today: Proceedings, 44; 3211–3216
Haris, M., M. W. Khan, J. Paz-Ferreiro, N. Mahmood, and N. Eshtiaghi (2022). Synthesis of Functional Hydrochar from Olive Waste for Simultaneous Removal of Azo and Non Azo Dyes from Water. Chemical Engineering Journal Advances, 9; 100233
Ihaddaden, S., D. Aberkane, A. Boukerroui, and D. Robert (2022). Removal of Methylene Blue (Basic Dye) by Coagulation Flocculation with Biomaterials (Bentonite and Opuntia Ficus Indica). Journal of Water Process Engineering, 49; 102952
Karthi, S., R. Sangeetha, K. Arumugam, T. Karthika, and S. Vimala (2022). Removal of Methylene Blue Dye Using Shrimp Shell Chitin from Industrial Effluents. Materials Today: Proceedings
Kenawy, E.-R., H. Tenhu, S. A. Khattab, A. A. Eldeeb, and M. M. Azaam (2022). Highly Efficient Adsorbent Material for Removal of Methylene Blue Dye Based on Functionalized Polyacrylonitrile. European Polymer Journal, 169; 111138
Lima, L. B., N. Priyanthab, S. A. A. Latipa, and Y. Lua (2021). Sequestration of Toxic Congo Red Dye Through the Utilization of Red Dragon Fruit Peel: Linear Versus Nonlinear Regression Analyses of Isotherm and Kinetics. Desalination And Water Treatment, 218; 409–422
Liu, X., J. Lu, M. Fu, H. Zheng, and Q. Chen (2022). Activated Carbon Induced Hydrothermal Carbonization for the Treatment of Cotton Pulp Black Liquor. Journal of Water Process Engineering, 47; 102733
Mahmoodi, M., E. Rafiee, and S. Eavani (2022). Photocatalytic Removal of Toxic Dyes, Liquorice and Tetracycline Wastewaters by a Mesoporous Photocatalyst Under Irradiation of Different Lamps and Sunlight. Journal of Environmental Management, 313; 115023
Nimibofa, A., E. Augustus, and D. Wankasi (2017). Comparative Sorption Studies of Dyes and Metal Ions by Ni/Al Layered Double Hydroxide. Internasional Journal of Material and Chemistry, 7(3); 25–35
Palapa, N. R., T. Taher, A. Wijaya, and A. Lesbani (2021). Modification of Cu/Cr Layered Double Hydroxide by Keggin Type Polyoxometalate as Adsorbent of Malachite Green from Aqueous Solution. Science and Technology Indonesia, 6(3); 209–217
Parvin, S., B. K. Biswas, M. A. Rahman, M. H. Rahman, M. S. Anik, and M. R. Uddin (2019). Study on Adsorption of Congo Red Onto Chemically Modified Egg Shell Membrane. Chemosphere, 236; 124326
Phan, K. A., D. Phihusut, and N. Tuntiwiwattanapun (2022). Preparation of Rice Husk Hydrochar as an Atrazine Adsorbent: Optimization, Characterization, and Adsorption Mechanisms. Journal of Environmental Chemical Engineering, 10(3); 107575
Ribeiro, J. N., A. V. F. Ribeiro, A. R. da Silva, M. de Godoi Pereira, J. P. de Oliveira, A. T. Tomaz,and B. Vitoria (2021). Vermicompost for Indigo Blue and Congo Red Removal. Journal of Water Resource and Protection, 13(6); 419–434
Santana, M. S., R. P. Alves, L. S. Santana, M. A. Gonçalves, and M. C. Guerreiro (2022). Structural, Inorganic, and Adsorptive Properties of Hydrochars Obtained by Hydrothermal Carbonization of Coee Waste. Journal of Environmental Management, 302; 114021
Tran, T. H., A. H. Le, T. H. Pham, D. T. Nguyen, S. W. Chang, W. J. Chung, and D. D. Nguyen (2020). Adsorption Isotherms and Kinetic Modeling of Methylene Blue Dye Onto a Carbonaceous Hydrochar Adsorbent Derived from Coffee Husk Waste. Science of the Total Environment, 725; 138325
Tu, W., Y. Liu, Z. Xie, M. Chen, L. Ma, G. Du, and M. Zhu (2021). A Novel Activation Hydrochar via Hydrothermal Carbonization and KOH Activation of Sewage Sludge and Coconut Shell for Biomass Wastes: Preparation, Characterization and Adsorption Properties. Journal of Colloid and Interface Science, 593; 390–407
Wei, Y., S. Fakudze, Y. Zhang, R. Ma, Q. Shang, J. Chen, C. Liu, and Q. Chu (2022). Co Hydrothermal Carbonization of Pomelo Peel and PVC for Production of Hydrochar Pellets with Enhanced Fuel Properties and Dechlorination. Energy, 239; 122350
Wekoye, J. N., W. C. Wanyonyi, P. T. Wangila, and M. K. Tonui (2020). Kinetic and Equilibrium Studies of Congo Red Dye Adsorption on Cabbage Waste Powder. Environmental Chemistry and Ecotoxicology, 2; 24–31
Wijaya, A., P. M. S. B. N. Siregar, A. Priambodo, N. R. Palapa,T. Taher, and A. Lesbani (2021). Innovative Modified of CuAl/C (C= Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution. Science and Technology Indonesia, 6(4); 228–234
Yu, Y., Y. Guo, G. Wang, Y. A. El-Kassaby, and S. Sokhansanj (2022). Hydrothermal Carbonization of Waste Ginkgo Leaf Residues for Solid Biofuel Production: Hydrochar Characterization and Its Pelletization. Fuel, 324; 124341
Yusuf, I., F. Flagiello, N. I. Ward, H. Arellano-García, C. Avignone-Rossa, and M. Felipe-Sotelo (2020). Valorisation of Banana Peels by Hydrothermal Carbonisation: Potential Use of the Hydrochar and Liquid by Product for Water Purification and Energy Conversion. Bioresource Technology Reports, 12; 100582
Zulfajri, M., Y.-T. Kao, and G. G. Huang (2021). Retrieve of Residual Waste of Carbon Dots Derived from Straw Mushroom as a Hydrochar for the Removal of Organic Dyes from Aqueous Solutions. Sustainable Chemistry and Pharmacy, 22; 100469
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.