Heterogeneous Catalytic Conversion of Citronellal into Isopulegol and Menthol: Literature Review

Amri Yahya, Dwiarso Rubiyanto , Is Fatimah

Abstract

The conversion of citronellal into isopulegol is a key route in the production of a number of important chemicals. In the perspective of green conversion, the use of a heterogeneous catalyst is superior due to its ease in separation and reusability, so it facilitates a highly economical conversion. In this review, we examine the use of some transition metals in cyclization reactions, which are suitable for citronellal conversion into isopulegol, and consider the potential progress in clay-based catalysts. The structure of clay which potentially provides the porosity by modification and supporting active metal is proposed to be the low-cost catalyst for the conversion. As other mechanism by porous materials-supported metal, the porosity of clay support contributes to conduct the
surface adsorption mechanism and the Broensted acid supply, meanwhile the metal acts as active site for cyclization, and in the one-pot conversion into menthol, as both cyclization and hydrogenation.

References

Álvarez-rodríguez, J., Rodríguez-ramos, I., Guerrero-ruiz, A., Gallegos-suarez, E. and Arcoya, A. (2012), “Influence of the nature of support on Ru-supported catalysts for selective hydrogenation of citral”, Chemical Engineering Journal, Vol. 206, pp. 169–178.
Armengol, E., Corma, A., García, H. and Jaime, P. (1995), “Acid zeolites as catalysts in organic reactions. Chemoselective Friedel-Crafts alkylation of benzene and toluene with cinnamyl alcohol”, Applied Catalysis A, General, Vol. 126 No. 2, pp. 391–399.
Azkaar, M., Mäki-Arvela, P., Vajglová, Z., Fedorov, V., Kumar, N., Hupa, L., Hemming, J., et al. (2019), “Synthesis of menthol from citronellal over supported Ru- and Pt-catalysts in continuous flow”, Reaction Chemistry and Engineering, Royal Society of Chemistry, Vol. 4 No. 12, pp. 2156–2169.
Badillo, J.J., Arevalo, G.E., Fettinger, J.C. and Franz, A.K. (2011), “Titanium-catalyzed stereoselective synthesis of spirooxindole oxazolines”, Organic Letters, Vol. 13 No. 3, pp. 418–421.
Baloyi, J., Ntho, T. and Moma, J. (2018), “Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review”, RSC Advances, Vol. 8 No. 10, pp. 5197–5211.
Bankovi??, P., Milutinovi??-Nikoli??, A., Mojovi??, Z., Jovi??-Jovi??i??, N., ??uni??, M., Dondur, V. and Jovanovi??, D. (2012), “Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions”, Applied Clay Science, Vol. 58, pp. 73–78.
Barakan, S. and Aghazadeh, V. (2019), “Synthesis and characterization of hierarchical porous clay heterostructure from Al, Fe -pillared nano-bentonite using microwave and ultrasonic techniques”, Microporous and Mesoporous Materials, Elsevier, Vol. 278 No. September 2018, pp. 138–148.
Bastian, S.A., Hammer, S.C., Kreß, N., Nestl, B.M. and Hauer, B. (2017), “Selectivity in the Cyclization of Citronellal Introduced by Squalene Hopene Cyclase Variants”, ChemCatChem, Vol. 9 No. 23, pp. 4364–4368.
Belver, C., Aranda, P., Martín-Luengo, M.A. and Ruiz-Hitzky, E. (2012), “New silica/alumina-clay heterostructures: Properties as acid catalysts”, Microporous and Mesoporous Materials, Elsevier Inc., Vol. 147 No. 1, pp. 157–166.
Braga, P.R.S., Costa, A. a., de Freitas, E.F., Rocha, R.O., de Macedo, J.L., Araujo, A.S., Dias, J. a., et al. (2012), “Intramolecular cyclization of (+)-citronellal using supported 12-tungstophosphoric acid on MCM-41”, Journal of Molecular Catalysis A: Chemical, Elsevier B.V., Vol. 358, pp. 99–105.
Brunner, H. (2020), “Takasago process to (–)‐menthol”, Catalysis from A to Z, Wiley publisher., available at:https://doi.org/10.1002/9783527809080.cataz16213.
Cecilia, J.A., García-Sancho, C., Vilarrasa-García, E., Jiménez-Jiménez, J. and Rodriguez-Castellón, E. (2018), “Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review”, Chemical Record, Vol. 18 No. 7, pp. 1085–1104.
Chmielarz, L., Kowalczyk, A., Skoczek, M., Rutkowska, M., Gil, B., Natkański, P., Radko, M., et al. (2018a), “Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols”, Applied Clay Science, Vol. 160 No. December 2017, pp. 116–125.
Chmielarz, L., Kowalczyk, A., Skoczek, M., Rutkowska, M., Gil, B., Natkański, P., Radko, M., et al. (2018b), “Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols”, Applied Clay Science, Vol. 160 No. July 2017, pp. 116–125.
Chuah, G. (2001), “Cyclisation of Citronellal to Isopulegol Catalysed by Hydrous Zirconia and Other Solid Acids”, Journal of Catalysis, Vol. 200 No. 2, pp. 352–359.
Chuah, G.K., Liu, S.H., Jaenicke, S. and Harrison, L.J. (2001), “Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids”, Journal of Catalysis, available at:https://doi.org/10.1006/jcat.2001.3208.
Coman, S.M., Patil, P., Wuttke, S. and Kemnitz, E. (2009), “Cyclisation of citronellal over heterogeneous inorganic fluorides - Highly chemo- and diastereoselective catalysts for (±)-isopulegol”, Chemical Communications, No. 4, pp. 460–462.
Cortés, C.B., Galván, V.T., Pedro, S.S. and García, T.V. (2011), “One pot synthesis of menthol from (±)-citronellal on nickel sulfated zirconia catalysts”, Catalysis Today, Vol. 172 No. 1, pp. 21–26.
Dasilva, K. (2004), “Cyclization of (+)-citronellal to (?)-isopulegol catalyzed by H3PW12O40/SiO2”, Catalysis Communications, Vol. 5 No. 8, pp. 425–429.
Enferadi-Kerenkan, A., Do, T.O. and Kaliaguine, S. (2018), “Heterogeneous catalysis by tungsten-based heteropoly compounds”, Catalysis Science and Technology, Vol. 8 No. 9, pp. 2257–2284.
Fatimah, I., Rubiyanto, D. and Huda, T. (2008), “PERANAN KATALIS TiO2/SiO2-MONTMORILLONIT PADA REAKSI KONVERSI SITRONELAL MENJADI ISOPULEGOL”, Reaktor, Vol. 12 No. 2, p. 83.
Fatimah, I., Rubiyanto, D. and Huda, T. (2014a), “Effect of Sulfation on Zirconia-Pillared Montmorillonite to the Catalytic Activity in Microwave-Assisted Citronellal Conversion”, International Journal of Chemical Engineering, Vol. 2014, pp. 1–7.
Fatimah, I., Rubiyanto, D. and Huda, T. (2014b), “Effect of sulfation on zirconia-pillared montmorillonite to the catalytic activity in microwave-assisted citronellal conversion”, International Journal of Chemical Engineering, Vol. 2014, available at:https://doi.org/10.1155/2014/950190.
Fatimah, I., Rubiyanto, D. and Huda, T. (2015a), “Preparation and characterization of Ni/Zr-Saponite as catalyst in catalytic hydrogen transfer reaction of isopulegol”, Materials Science Forum, Vol. 827, pp. 311–316.
Fatimah, I., Rubiyanto, D. and Huda, T. (2015b), Preparation and Characterization of Ni/Zr-Saponite as Catalyst in Catalytic Hydrogen Transfer Reaction of Isopulegol, Materials Science Forum, Vol. 827, available at:https://doi.org/10.4028/www.scientific.net/MSF.827.311.
Fatimah, I., Rubiyanto, D., Huda, T., Zuhrufa, Z., Yudha, S.P., Kartika, N.C., Rubiyanto, D., et al. (2016), “nanoparticles as catalyst in microwave assisted conversion of citronellal Novel sulphated zirconia pillared clay nanoparticles as catalyst in microwave assisted conversion of citronellal”, Vol. 7857 No. February, available at:https://doi.org/10.1179/1753555715Y.0000000045.
Fatimah, I. and Zuhrufa, Z. (2015), “PREPARATION AND CHARACTERIZATION OF Ni / Zr-SAPONITE AS CATALYST IN CATALYTIC HYDROGEN TRANSFER REACTION OF ISOPULEGOL”, Vol. 827, pp. 311–316.
Gavahian, M., Lee, Y.T. and Chu, Y.H. (2018), “Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium”, Innovative Food Science and Emerging Technologies, Elsevier Ltd, Vol. 48, pp. 33–41.
González, B., Pérez, A.H., Trujillano, R., Gil, A. and Vicente, M.A. (2017), “Microwave-assisted pillaring of a montmorillonite with al-polycations in concentrated media”, Materials, Vol. 10 No. 8, pp. 1–8.
Guidotti, M., Moretti, G., Psaro, R. and Ravasio, N. (2000), “One-pot conversion of citronellal into isopulegol epoxide on mesoporous titanium silicate”, Chemical Communications, No. 18, pp. 1789–1790.
Guidotti, M., Psaro, R., Ravasio, N. and Moretti, G. (2000), “One-pot conversion of citronellal into isopulegol epoxide on mesoporous titanium silicate”, Chemical Communications, No. 18, pp. 1789–1790.
Hamzah, M.H., Che Man, H., Abidin, Z.Z. and Jamaludin, H. (2014), “Comparison of citronella oil extraction methods from Cymbopogon nardus grass by ohmic-heated hydro-distillation, hydro-distillation, and steam distillation”, BioResources, Vol. 9 No. 1, pp. 256–272.
Ilyina, I. V., Patrusheva, O.S., Zarubaev, V. V., Misiurina, M.A., Slita, A. V., Esaulkova, I.L., Korchagina, D. V., et al. (2021), “Influenza antiviral activity of F- and OH-containing isopulegol-derived octahydro-2H-chromenes”, Bioorganic and Medicinal Chemistry Letters, Elsevier Ltd, Vol. 31 No. November 2020, p. 127677.
Imachi, S., Owada, K. and Onaka, M. (2007), “Intramolecular carbonyl-ene reaction of citronellal to isopulegol over ZnBr2-loading mesoporous silica catalysts”, Journal of Molecular Catalysis A: Chemical, Vol. 272 No. 1–2, pp. 174–181.
Jaafari, A., Tilaoui, M., Mouse, H.A., M’Bark, L.A., Aboufatima, R., Chait, A., Lepoivre, M., et al. (2012), “Comparative study of the antitumor effect of natural monoterpenes: Relationship to cell cycle analysis”, Brazilian Journal of Pharmacognosy, Vol. 22 No. 3, pp. 534–540.
Jimeno, C., Miras, J. and Esquena, J. (2013), “TiO2(SiO2)xand ZrO2(SiO2)xcryogels as catalysts for the citronellal cyclization to isopulegol”, Catalysis Letters, Vol. 143 No. 6, pp. 616–623.
Jung, E., Byun, S., Kim, S., Kim, M., Park, D. and Lee, J. (2012), “Isomenthone protects human dermal fibroblasts from TNF-α-induced death possibly by preventing activation of JNK and p38 MAPK.”, Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, Elsevier Ltd, Vol. 50 No. 10, pp. 3514–20.
K. C. Nicolaou, Vourloumis, D., Winssinger, N. and Baran, P.S. (2000), “The_Art_and_Science_of_Total_Synthesis”, Angewandte Chemie - International Edition Chem. Int. Ed, Vol. 39, pp. 44–122.
Kalaivani, K. and Chandrasekaran, S. (2019), “Isopulegol Ameliorates Dyslipidemia by Modulating Adipokine Secretion in High Fat Diet / Streptozotocin Induced Diabetic Rats”, Journal of Drug Delivery and Therapeutics, Vol. 9 No. 4A, pp. 126–136.
Kalmakhanova, M.S., Diaz de Tuesta, J.L., Massalimova, B.K. and Gomes, H.T. (2019), “Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights”, Environmental Engineering Research, Vol. 25 No. 2, pp. 186–196.
Kooli, F., Liu, Y., Hbaieb, K. and Al-faze, R. (2016), “Microporous and Mesoporous Materials Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives”, Vol. 226, pp. 482–492.
Kooli, F., Liu, Y., Hbaieb, K. and Al-Faze, R. (2017), “Preparation and catalytic activities of porous clay heterostructures from aluminium-intercalated clays: effect of Al content”, Clay Minerals, Vol. 52 No. 4, pp. 521–535.
Laluc, M., Mäki-Arvela, P., Peixoto, A.F., Li-Zhulanov, N., Sandberg, T., Salakhutdinov, N.F., Volcho, K., et al. (2020), “Catalytic synthesis of bioactive 2H-chromene alcohols from (−)-isopulegol and acetone on sulfonated clays”, Reaction Kinetics, Mechanisms and Catalysis, Springer International Publishing, Vol. 129 No. 2, pp. 627–644.
Lenardão, E.J., Botteselle, G. V., de Azambuja, F., Perin, G. and Jacob, R.G. (2007), “Citronellal as key compound in organic synthesis”, Tetrahedron, Vol. 63 No. 29, pp. 6671–6712.
Li, P., Ji, Y., Chen, W., Zhang, X. and Wang, L. (2013), “The facile synthesis of 2-bromoindoles via Cs2CO 3-promoted intramolecular cyclization of 2-(gem-dibromovinyl)anilines under transition-metal-free conditions”, RSC Advances, Vol. 3 No. 1, pp. 73–78.
Li, Y. and Lin, Z. (2015), “Gold(III)-Catalyzed Intramolecular Cyclization of α‑Pyrroles to.pdf”.
Liu, J., Li, X., Zuo, S. and Yu, Y. (2007), “Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites”, Applied Clay Science, Vol. 37 No. 3–4, pp. 275–280.
Liu, Q.L., Wen, D. Di, Hang, C.C., Li, Q.A. and Zhu, Y.M. (2010), “A novel and regiospecific synthesis of 1-aryl-1H-benzotriazoles via copper(I)-catalyzed intramolecular cyclization reaction”, Helvetica Chimica Acta, Vol. 93 No. 7, pp. 1350–1354.
Liu, T., Zheng, X.W., Han, L.L., Li, Y.P., Han, S.M. and Yu, Z.Y. (2016), “Mechanistic insight into the selective cyclization of arylnitrones to indolines via Rh(III) catalyst: A theoretical study”, RSC Advances, Royal Society of Chemistry, Vol. 6 No. 28, pp. 23265–23271.
Mäki-Arvela, P., Kumar, N., Kubička, D., Nasir, A., Heikkilä, T., Lehto, V.P., Sjöholm, R., et al. (2005), “One-pot citral transformation to menthol over bifunctional micro- and mesoporous metal modified catalysts: Effect of catalyst support and metal”, Journal of Molecular Catalysis A: Chemical, Vol. 240 No. 1–2, pp. 72–81.
Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T. and Murzin, D.Y. (2004), “Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol”, Journal of Catalysis, Vol. 225 No. 1, pp. 155–169.
Manos, G., Yusof, I.Y., Papayannakos, N. and Gangas, N.H. (2001), “Catalytic Cracking of Polyethylene over Clay Catalysts . Comparison with an Ultrastable Y Zeolite”, Industrial & Engineering Chemistry Research, Vol. 40, pp. 2220–2225.
Mao, H., Li, B., Li, X., Liu, Z. and Ma, W. (2009), “Mesoporous nickel (or cobolt)-doped silica-pillared clay: Synthesis and characterization studies”, Materials Research Bulletin, Vol. 44 No. 7, pp. 1569–1575.
Mesias-Salazar, A., Trofymchuk, O.S., Daniliuc, C.G., Antiñolo, A., Carrillo-Hermosilla, F., Nachtigall, F.M., Santos, L.S., et al. (2020), “Copper (II) as catalyst for intramolecular cyclization and oxidation of (1,4-phenylene)bisguanidines to benzodiimidazole-diylidenes”, Journal of Catalysis, Elsevier Inc., Vol. 382, pp. 150–154.
Milone, C., Gangemi, C., Neri, G., Pistone, A. and Galvagno, S. (2000), “Selective one step synthesis of ( − ) menthol from ( + ) citronellal on Ru supported on modified SiO 2”, Vol. 199, pp. 239–244.
Nagendrappa, G. (2011), “Organic synthesis using clay and clay-supported catalysts”, Applied Clay Science, Elsevier B.V., Vol. 53 No. 2, pp. 106–138.
Neaţu, F., Coman, S., Pârvulescu, V.I., Poncelet, G., De Vos, D. and Jacobs, P. (2009), “Heterogeneous catalytic transformation of citronellal to menthol in a single step on Ir-beta zeolite catalysts”, Topics in Catalysis, Vol. 52 No. 9, pp. 1292–1300.
Nisyak, K., Iftitah, E.D. and Tjahjanto, R.T. (2017), “Konversi Sitronelal Menjadi Senyawa Isopulegol”, Vol. 39 No. 2, pp. 47–54.
Nuryanti, Wijayanti, R. and Masdikoh. (2019), “Produksi Isopulegol Dengan Siklisasi Citronellal”, pp. 85–94.
Panda, A.K. (2018), “Thermo ‑ catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst”, International Journal of Industrial Chemistry, Springer Berlin Heidelberg, Vol. 9 No. 2, pp. 167–176.
Park, K.W., Jung, J.H., Kim, J.D., Kim, S.K. and Kwon, O.Y. (2009), “Preparation of mesoporous silica-pillared H+-titanosilicates”, Microporous and Mesoporous Materials, Elsevier Inc., Vol. 118 No. 1–3, pp. 100–105.
Pinto, M.L., Marques, J. and Pires, J. (2012), “Porous clay heterostructures with zirconium for the separation of hydrocarbon mixtures”, Separation and Purification Technology, Vol. 98, pp. 337–343.
Plößer, J., Lucas, M. and Claus, P. (2014), “Highly selective menthol synthesis by one-pot transformation of citronellal using Ru/H-BEA catalysts”, Journal of Catalysis, Vol. 320 No. 1, pp. 189–197.
Plößer, J., Lucas, M., Warna, J., Salmi, T., Yu, D., Murzin and Claus, P. (2016), “Kinetics of the One Pot Transformation of Citronellal to Menthols on Ru-H-BEA Catalysts.pdf”, available at:https://doi.org/10.1021/acs.oprd.6b00214.
Radwan, D., Saad, L., Mikhail, S., Selim, S.A. and Division, R. (2009), “Catalytic Evaluation of Sulfated Zirconia Pillared Clay in N-hexane Transformation”, Vol. 5 No. 12, pp. 2332–2342.
Ramos, A.G.B., Menezes, I.R.A. de, Silva, Da, M.S.A., Pessoa, R.T., Neto, L.J. de L., Passos, F.R.S., et al. (2020), “settings Open AccessArticle Antiedematogenic and Anti-Inflammatory Activity of the Monoterpene Isopulegol and Its β-Cyclodextrin (β-CD) Inclusion Complex in Animal Inflammation Models”, Foods, Vol. 9 No. 630, p. 9050630.
Raut, J.S. and Karuppayil, S.M. (2014), “A status review on the medicinal properties of essential oils”, Industrial Crops and Products, Elsevier B.V., Vol. 62, pp. 250–264.
Ravasio, N., Poli, N., Psaro, R., Saba, M. and Zaccheria, F. (2000), “Bifunctional copper catalysts . Part II . ∗ Stereoselective synthesis of ( − ) -menthol starting from ( + ) -citronellal”, Vol. 13, pp. 195–199.
Rožić, L., Grbić, B., Radić, N., Petrović, S., Novaković, T., Vuković, Z. and Nedić, Z. (2011), “Mesoporous 12-tungstophosphoric acid/activated bentonite catalysts for oxidation of 2-propanol”, Applied Clay Science, Vol. 53 No. 2, pp. 151–156.
Rubiyanto, D., Prakoso, N.I., Sahroni, I. and Nurillahi, R. (2020), “ZnO – Porous Clay Heterostructure from Saponite as Green Catalyst for Citronellal Cyclization”, Vol. 15 No. 1, pp. 137–145.
Salea, R., Hiendrawan, S., Subroto, E., Veriansyah, B. and Tjandrawinata, R.R. (2018), “Supercritical carbon dioxide extraction of citronella oil from cymbopogon winterianus using taguchi orthogonal array design”, International Journal of Applied Pharmaceutics, Vol. 10 No. 6, pp. 147–151.
Sekerová, L., Březinová, P., Do, T.T., Vyskočilová, E., Krupka, J., Červený, L., Havelková, L., et al. (2020), “Sulfonated Hyper-cross-linked Porous Polyacetylene Networks as Versatile Heterogeneous Acid Catalysts”, ChemCatChem, Vol. 12 No. 4, pp. 1075–1084.
Shah, A.K., Park, S., Khan, H.A., Bhatti, U.H., Kumar, P., Bhutto, A.W. and Park, Y.H. (2018), “Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: effects of acidity and pore structure on catalytic activity”, Research on Chemical Intermediates, Springer Netherlands, Vol. 44 No. 4, pp. 2405–2423.
Sharma, R., Rao, R., Kumar, S., Mahant, S. and Khatkar, S. (2019), “Therapeutic Potential of Citronella Essential Oil: A Review”, Current Drug Discovery Technologies, Vol. 16 No. 4, pp. 330–339.
Shieh, D., Tsai, C. and Ko, A. (2003), “LIQUID-PHASE SYNTHESIS OF ISOPULEGOL FROM CITRONELLAL USING MESOPOROUS MOLECULAR SIEVES MCM-41 AND ZEOLITES Dong-Lin Shieh, Chia-Chun Tsai and An-Nan Ko*”, Vol. 79 No. 2, pp. 381–389.
Silva, C.F., Moura, F.C., Mendes, M.F. and Pessoa, F.L.P. (2011), “Extraction of citronella (Cymbopogon nardus) essential oil using supercritical CO2: Experimental data and mathematical modeling”, Brazilian Journal of Chemical Engineering, Vol. 28 No. 2, pp. 343–350.
Da Silva, K.A., Robles-Dutenhefner, P.A., Sousa, E.M.B., Kozhevnikova, E.F., Kozhevnikov, I. V. and Gusevskaya, E. V. (2004), “Cyclization of (+)-citronellal to (-)-isopulegol catalyzed by H 3PW12O40/SiO2”, Catalysis Communications, Vol. 5 No. 8, pp. 425–429.
da Silva Rocha, K.A., Robles-Dutenhefner, P.A., Sousa, E.M.B., Kozhevnikova, E.F., Kozhevnikov, I. V. and Gusevskaya, E. V. (2007), “Pd-heteropoly acid as a bifunctional heterogeneous catalyst for one-pot conversion of citronellal to menthol”, Applied Catalysis A: General, Vol. 317 No. 2, pp. 171–174.
Solanki, K.P., Desai, M.A. and Parikh, J.K. (2018), “Sono hydrodistillation for isolation of citronella oil: A symbiotic effect of sonication and hydrodistillation towards energy efficiency and environment friendliness”, Ultrasonics Sonochemistry, Vol. 49 No. July, pp. 145–153.
Sonehara, T., Murakami, S., Yamazaki, S. and Kawatsura, M. (2017), “Iron-Catalyzed Intermolecular Hydrothiolation of Internal Alkynes with Thiosalicylic Acids, and Sequential Intramolecular Cyclization Reaction”, Organic Letters, Vol. 19 No. 16, pp. 4299–4302.
De Sousa, D.P. (2015), “Bioactive Essential Oils and Cancer”, Bioactive Essential Oils and Cancer, pp. 1–292.
Sudiyarmanto, Hidayati, L.N., Kristiani, A. and Aulia, F. (2017), “Hydrogenation of citral into its derivatives using heterogeneous catalyst”, AIP Conference Proceedings, Vol. 1904 No. December, available at:https://doi.org/10.1063/1.5011901.
Telalović, S., Ramanathan, A., Mul, G. and Hanefeld, U. (2010), “TUD-1: Synthesis and application of a versatile catalyst, carrier, material...”, Journal of Materials Chemistry, Vol. 20 No. 4, pp. 642–658.
Tobisch, S. (2006), “Intramolecular hydroamination/cyclisation of aminoallenes mediated by a cationic zirconocene catalyst: A computational mechanistic study”, Dalton Transactions, No. 35, pp. 4277–4285.
Tursiloadi, S., Litiaz, A.A., Pertiwi, R., Adilina, I.B. and Sembiring, K.C. (2015), “Development of Green Nickel-Based Zeolite Catalysts for Citronella Oil Conversion to Isopulegol”, Procedia Chemistry, Vol. 16, pp. 563–569.
Vandichel, M., Vermoortele, F., Cottenie, S., De Vos, D.E., Waroquier, M. and Van Speybroeck, V. (2013), “Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization”, Journal of Catalysis, Elsevier Inc., Vol. 305, pp. 118–129.
Vetere, V., Santori, G.F., Moglioni, A., Moltrasio Iglesias, G.Y., Casella, M.L. and Ferretti, O.A. (2002), “Hydrogenation of (-)-menthone, (+)-isomenthone, and (+)-pulegone with platinum/tin catalysts”, Catalysis Letters, Vol. 84 No. 3–4, pp. 251–257.
Vrbková, E., Šteflová, B., Zapletal, M., Vyskočilová, E. and Červený, L. (2020), “Tungsten oxide-based materials as effective catalysts in isopulegol formation by intramolecular Prins reaction of citronellal”, Research on Chemical Intermediates, Springer Netherlands, Vol. 46 No. 9, pp. 4047–4059.
Wang, Y., Liao, W., Huang, G., Xia, Y. and Yu, Z.X. (2014), “Mechanisms of the PtCl2-catalyzed intramolecular cyclization of o -isopropyl-substituted aryl alkynes for the synthesis of indenes and comparison of three sp3 C-H bond activation modes”, Journal of Organic Chemistry.
Wang, Y., Su, X., Xu, Z., Wen, K., Zhang, P., Zhu, J. and He, H. (2016), “Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene”, Applied Surface Science, Elsevier B.V., Vol. 363 No. February 2018, pp. 113–121.
Wany, A., Kumar, A., Nallapeta, S., Jha, S., Nigam, V.K. and Pandey, D.M. (2014), “Extraction and characterization of essential oil components based on geraniol and citronellol from Java citronella (Cymbopogon winterianus Jowitt)”, Plant Growth Regulation, Vol. 73 No. 2, pp. 133–145.
Wu, H., Li, J., Jia, Y., Xiao, Z., Li, P., Xie, Y., Zhang, A., et al. (2019), “Essential Oil Extracted from Cymbopogon citronella Leaves by Supercritical Carbon Dioxide: Antioxidant and Antimicrobial Activities”, Journal of Analytical Methods in Chemistry, Vol. 2019, available at:https://doi.org/10.1155/2019/8192439.
Xu, X., Liu, Y. and Park, C.M. (2012), “Rhodium(III)-catalyzed intramolecular annulation through C-H activation: Total synthesis of (±)-antofine, (±)-septicine, (±)-tylophorine, and rosettacin”, Angewandte Chemie - International Edition, Vol. 51 No. 37, pp. 9372–9376.
Yadav, G.D. and Lande, S. V. (2006), “Novelties of kinetics of chemoselective reduction of citronellal to citronellol by sodium borohydride under liquid-liquid phase transfer catalysis”, Journal of Molecular Catalysis A: Chemical, Vol. 247 No. 1–2, pp. 253–259.
Yadav, G.D. and Nair, J.J. (1999), “Sulfated zirconia and its modified versions as promising catalysts for industrial processes”, Vol. 33, pp. 1–48.
Yu, D., Lei, J., Zhou, L., Du, X., Guo, Z. and Li, J. (2018), “Oxidative desulfurization of fuels at room temperature using ordered meso-macroporous H3PW12O40-SiO2 catalyst with high specific surface areas.pdf”, available at:https://doi.org/doi.org/10.1016/j.arabjc.2018.06.017.
Zaccheria, F., Santoro, F., Iftitah, E.D. and Ravasio, N. (2018), “Brønsted and lewis solid acid catalysts in the valorization of citronellal”, Catalysts, Vol. 8 No. 10, available at:https://doi.org/10.3390/catal8100410.
Zheng, L., Tang, M., Wang, Y., Guo, X., Wei, D. and Qiao, Y. (2016), “A DFT study on PBu3-catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles for the formation of functionalized pyrrolidines: Mechanisms, selectivities, and the role of catalysts”, Organic and Biomolecular Chemistry, Vol. 14 No. 11, pp. 3130–3141.
Zhou, C.H., Zhao, H., Tong, D.S., Wu, L.M. and Yu, W.H. (2013), “Recent advances in catalytic conversion of glycerol”, Catalysis Reviews - Science and Engineering, Vol. 55 No. 4, pp. 369–453.

Authors

Amri Yahya
Dwiarso Rubiyanto
Is Fatimah
isfatimah@uii.ac.id (Primary Contact)
Yahya, A. ., Rubiyanto , D., & Fatimah, I. (2021). Heterogeneous Catalytic Conversion of Citronellal into Isopulegol and Menthol: Literature Review. Science and Technology Indonesia, 6(3), 166–180. https://doi.org/10.26554/sti.2021.6.3.166-180

Article Details