One-pot Hydrothermal Synthesis and Characterization of Zirconium Oxide Nanoparticles
Abstract
Zirconia (also known as zirconium dioxide, ZrO2) is a white crystalline naturally occurring mineral that offers excellent optical, dielectric, and mechanical properties. Considering these properties and referring to previous studies on the optimization of ZrO2 NPs synthesis, in the present study, we studied the crystalline, optical, and fluorescence properties of ZrO2 nanoparticles (NPs) formed by the hydrothermal synthesis route. The physicochemical features of the nanoparticles were examined in the photocatalytic oxidation of rhodamine B. From the powder XRD analysis, the ZrO2 NPs were found to be highly crystalline, while the fluorescence (FL) spectra indicated an emission band at 473 nm, which could be linked to a blue shift. Also, the FTIR and Raman spectroscopies confirmed the functionality and bonding, and in addition, the XPS analysis provided the elemental peaks of Zr 3d and O 1s, where all these analyses evidenced the successful formation of ZrO2. Examination of the photocatalytic activity of ZrO2 NPs revealed the capability of the material for rhodamine B photocatalytic degradation effectively, with a degradation efficiency of 86% after 2 h of treatment. Moreover, the nanoparticles exhibited stability and reusability over five cycles. Overall, from the analysis, ZrO2 NPs can be easily formed via the hydrothermal route with tailored optical and fluorescence properties to find applications in the electronics industry for the manufacturing of light emitting devices.
References
Andreas, R. and A. Oktaviani (2022). Synthesis, Characterization, and Activity of The Photocatalyst Polyaniline (PANI)/TiO2 in Degrading Rhodamine B Dye. Science and Technology Indonesia, 7(1); 126–131
Azdad, Z., L. Marot, L. Moser, R. Steiner, and E. Meyer (2018). Valence Band Behaviour of Zirconium Oxide, Photoelectron and Auger Spectroscopy Study. Scientific Reports, 8(1); 16251
Basahel, S. N., T. T. Ali, M. Mokhtar, and K. Narasimharao (2015). Influence of Crystal Structure of Nanosized ZrO2 on Photocatalytic Degradation of Methyl Orange. Nanoscale Research Letters, 10; 1–13
Behbahani, A., S. Rowshanzamir, and A. Esmaeilifar (2012). Hydrothermal Synthesis of Zirconia Nanoparticles from Commercial Zirconia. Procedia Engineering, 42; 908–917
Bhaskar, S., E. W. Awin, K. H. Kumar, A. Lale, S. Bernard, and R. Kumar (2020). Design of Nanoscaled Heterojunctions in Precursor-derived t-ZrO2/SiOC (N) Nanocomposites: Transgressing the Boundaries of Catalytic Activity from UV to Visible Light. Scientific Reports, 10(1); 430
Bumajdad, A., A. A. Nazeer, F. Al Sagheer, S. Nahar, and M. I. Zaki (2018). Controlled Synthesis of ZrO2 Nanoparticles with Tailored Size, Morphology and Crystal Phases via Organic/inorganic Hybrid Films. Scientific Reports, 8(1); 3695
Channu, V. R., R. R. Kalluru, M. Schlesinger, M. Mehring, and R. Holze (2011). Synthesis and Characterization of ZrO2 Nanoparticles for Optical and Electrochemical Applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386(1-3); 151–157
Daunis, T. B., K. A. Schroder, and J. W. Hsu (2020). Photonic Curing of Solution-deposited ZrO2 Dielectric on PEN: a Path Towards High-throughput Processing of Oxide Electronics. npj Flexible Electronics, 4(1); 7
Dobrosz-Gomez, I., M. Á. Gómez-García, J. Bojarska, M. Kozanecki, and J. M. Rynkowski (2015). Combustion Synthesis and Properties of Nanocrystalline Zirconium Oxide. Comptes Rendus Chimie, 18(10); 1094–1105
Doroshkevich, A. S., A. I. Lyubchyk, B. L. Oksengendler, T. Y. Zelenyak, N. O. Appazov, A. K. Kirillov, T. A. Vasilenko, A. A. Tatarinova, O. O. Gorban, and V. I. Bodnarchuk (2022). Electric Energy Storage Effect in Hydrated ZrO2-Nanostructured System. Nanomaterials, 12(11); 1783
Farag, H. K., K. H. Hegab, and S. Zein El Abedin (2011). Preparation and Characterization of Zirconia and Mixed Zirconia/titania in Ionic Liquids. Journal of Materials Science, 46; 3330–3336
Fatimah, I. (2014). Preparation of ZrO2 /Al2O3-Montmorillonite Composite as Catalyst for Phenol Hydroxylation. Journal of Advanced Research, 5(6); 663–670
Fatimah, I., G. Purwiandono, I. Sahroni, S. Sagadevan, W. Chun-Oh, S. A. I. S. M. Ghazali, and R.-a. Doong (2022). Recyclable Catalyst of ZnO/SiO2 Prepared from Salacca Leaves Ash for Sustainable Biodiesel Conversion. South African Journal of Chemical Engineering, 40(1); 134–143
Guel, M. L. A., L. D. Jiménez, and D. A. C. Hernández (2017). Ultrasound-Assisted Sol-gel
Synthesis of ZrO2 . Ultrasonics Sonochemistry, 35; 514–517
Hirvonen, A., R. Nowak, Y. Yamamoto, T. Sekino, and K. Niihara (2006). Fabrication, Structure, Mechanical and Thermal Properties of Zirconia-based Ceramic Nanocomposites. Journal of the European Ceramic Society, 26(8); 1497–1505
Horti, N., M. Kamatagi, S. Nataraj, M. Wari, and S. Inamdar (2020). Structural and Optical Properties of Zirconium Oxide (ZrO2) Nanoparticles: Effect of Calcination Temperature. Nano Express, 1(1); 010022
Hwangbo, Y. and Y. I. Lee (2019). Facile Synthesis of Zirconia Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Combined with a Citrate Precursor Method. Journal of Alloys and Compounds, 771; 821–826
Itagaki, Y., M. Takemoto, H. Murata, T. Kanzawa, Y. Tokudome, and A. Nakahira (2022). Supercritical Hydrothermal Synthesis of Zirconia Nanoparticles from Zirconium Basic
Carbonate. Journal of the Ceramic Society of Japan, 130(11); 861–866
Jung, K. Y. and S. B. Park (2001). Effect of Calcination Temperature and Addition of Silica, Zirconia, Alumina on the Photocatalytic Activity of Titania. Korean Journal of Chemical Engineering, 18; 879–888
Kumari, L., W. Li, J. Xu, R. Leblanc, D. Wang, Y. Li, H. Guo, and J. Zhang (2009). Controlled Hydrothermal Synthesis of Zirconium Oxide Nanostructures and their Optical Properties. Crystal Growth and Design, 9(9); 3874–3880
Laatar, F., H. Moussa, H. Alem, L. Balan, E. Girot, G. Medjahdi, H. Ezzaouia, and R. Schneider (2017). CdSe Nanorod/TiO2 Nanoparticle Heterojunctions with Enhanced Solar-and Visible light Photocatalytic Activity. Beilstein Journal of Nanotechnology, 8(1); 2741–2752
Lebeau, B., I. Naboulsi, L. Michelin, C. Marichal, S. Rigolet, C. Carteret, S. Brunet, M. Bonne, and J.-L. Blin (2020). Amorphous Mesostructured Zirconia with High (Hydro) Thermal Stability. RSC Advances, 10(44); 26165–26176
Leong, C. Y., H. L. Teh, M. C. Chen, and S. L. Lee (2022). Effect of Synthesis Methods on Properties of Copper Oxide Doped Titanium Dioxide Photocatalyst in Dye Photodegradation of Rhodamine B. Science and Technology Indonesia, 7(1); 91–97
Li, J., S. Meng, J. Niu, and H. Lu (2017). Electronic Structures and Optical Properties of Monoclinic ZrO2 Studied by First-principles Local Density Approximation+ U Approach. Journal of Advanced Ceramics, 6; 43–49
Li, N., B. Dong, W. Yuan, Y. Gao, L. Zheng, Y. Huang, and S. Wang (2007). ZrO2 Nanoparticles Synthesized Using Ionic Liquid Microemulsion. Journal of Dispersion Science and Technology, 28(7); 1030–1033
Liu, S., J. Wang, Y. Chen, Z. Song, B. Han, H. Wu, T. Zhang, and M. Liu (2023). Tetragonal Nanosized Zirconia: Hydrothermal Synthesis and Its Performance as a Promising Ceramic Reinforcement. Inorganics, 11(5); 217
Marković, J. P. and S. K. Milonjić (2006). Synthesis of Zirconia Colloidal Dispersions by Forced Hydrolysis. Journal of the Serbian Chemical Society, 71(6); 613–619
Mei, Y., C. Meisheng, N. Zhang, L. Zhiqi, and X. Huang (2013). Characterization of CeO2-ZrO2 Mixed Oxides Prepared by Two Different Co-precipitation Methods. Journal of Rare Earths, 31(3); 251–256
Moravec, P., J. Smolík, H. Keskinen, J. M. Mäkelä, V. V. Levdansky, et al. (2007). Vapor Phase Synthesis of Zirconia Fine Particles from Zirconium Tetra-tert-butoxide. Aerosol and Air Quality Research, 7(4); 563–577
Mzimela, N., S. Tichapondwa, and E. Chirwa (2022). Visible-Light-Activated Photocatalytic Degradation of Rhodamine B Using WO3 Nanoparticles. RSC Advances, 12(53); 34652–34659
Nazir, M. A., T. Mahmood, A. A. Zafar, N. Akhtar, T. Hussain, M. A. Saeed, F.-e. Aleem, A. Saeed, J. Raza, and C. Cao (2021). Electronic, Optical and Elastic Properties of Cubic Zirconia (c-ZrO2) Under Pressure: A DFT Study. Physica B: Condensed Matter, 604; 412462
Öksüz, K., Ş. Şen, and U. Şen (2017). Influence of ZrO2 Addition on the Structure and Dielectric Properties of BaTiO3 Ceramics. Acta Physica Polonica A, 131(1); 197–199
Padovini, D., A. Magdalena, R. Capeli, E. Longo, C. Dalmaschio, A. Chiquito, and F. Pontes (2019). Synthesis and Characterization of ZrO2@SiO2 Core-shell Nanostructure as Nanocatalyst: Application for Environmental Remediation of Rhodamine B Dye Aqueous Solution. Materials Chemistry and Physics, 233; 1–8
Patel, S. B., N. Baker, I. Marques, A. Hamlekhan, M. T. Mathew, C. Takoudis, C. Friedrich, C. Sukotjo, and T. Shokuhfar (2017). Transparent TiO2 Nanotubes on Zirconia for Biomedical Applications. RSC Advances, 7(48); 30397–30410
Sagadevan, S., J. Podder, and I. Das (2016). Hydrothermal Synthesis of Zirconium Oxide Nanoparticles and Its Characterization. Journal of Materials Science: Materials in Electronics, 27; 5622–5627
Sigwadi, R., M. Dhlamini, T. Mokrani, and F. Nemavhola (2019). Preparation of a High Surface Area Zirconium Oxide for Fuel Cell Application. International Journal of Mechanical and Materials Engineering, 14(1); 1–11
Srivastava, M., P. Bera, J. Balaraju, and B. Ravisankar (2016). FESEM and XPS Studies of ZrO2 Modified Electrode-posited NiCoCrAlY Nanocomposite Coating Subjected to Hot Corrosion Environment. RSC Advances, 6(110); 109083–109090
Tran, T. V., D. T. C. Nguyen, P. S. Kumar, A. T. M. Din, A. A. Jalil, and D. V. N. Vo (2022). Green Synthesis of ZrO2 Nanoparticles and Nanocomposites for Biomedical and Environmental Applications: A Review. Environmental Chemistry Letters, 20(2); 1–23
Vinayagam, R., B. Singhania, G. Murugesan, P. S. Kumar, R. Bhole, M. K. Narasimhan, T. Varadavenkatesan, and R. Selvaraj (2022). Photocatalytic Degradation of Methylene Blue Dye Using Newly Synthesized Zirconia Nanoparticles. Environmental Research, 214; 113785
Vollath, D. and D. V. Szabó (2006). The Microwave Plasma Process–a Versatile Process to Synthesise Nanoparticulate Materials. Journal of Nanoparticle Research, 8; 417–428
Waghmare, M., P. Sonone, P. Patil, V. Kadam, H. Pathan, and A. Ubale (2018). Spray Pyrolytic Deposition of Zirconium Oxide Thin Films: Influence of Concentration on Structural and Optical Properties. Engineered Science, 5(2); 79–87
Wang, J., R. Yu, Z. Li, F. Yang, L. Luo, D. Wang, H. Cheng, Y. Zhang, and Q. Zhang (2023). Heteropolyacid-loaded MOF-derived Mesoporous Zirconia Catalyst for Chemical Degradation of Rhodamine B. Green Processing and Synthesis, 12(1); 20230005
Zhang, L., S. Dorjpalam, G. Ji, and J. Peng (2020). Corrosion of Stainless Steel Coated with a ZrO2 Film in a Hydrogen Sulfide Gas Environment. SN Applied Sciences, 2; 1–12
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.